
Patent Pending Related to GOBS Technology.Authorization for Use/Disclosure Required.

DRAFT 02 APR 1999

Carderock Division
Naval Surface Warfare Center

Bethesda, Maryland 20817-5700

NSWCCD-26-TR-1998/xx October 1998

Total Ship Systems Directorate
Research and Development Report

Leading Edge Advanced Prototyping
 For Ships (LEAPS):

LEAPS/API Reference Manual
Version 2.0

by
Richard T. Van Eseltine and Robert Ames

Distribution authorized to the Department of Defense and DoD
contractors only; critical technology; October 1998. Other

requests for this document shall be referred to the Carderock
Division, Naval Surface Warfare Center (Code 20)

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 1 02 APR 1999

TABLE OF CONTENTS

TABLE OF CONTENTS ..1

PREFACE ...6

GLOBALS ...6
BASIC LEAPS TYPE DEFINITIONS...6

Char8... 6
CharString.. 6
CharStringList .. 6
Int32... 6
Int32List ... 6
KeyList... 6
Logical ... 6
NameVersionPairList ... 6
Real32 ... 6
Real32List.. 7
Real64 ... 7
Real64List.. 7
Uint32 .. 7
Uint32List... 7
UniqueIdList... 7

BASIC LEAPS ENUMERATIONS ..7
ConnectionItemTypeEnum... 7
ConnectionTypeEnum ... 7
DiagramTypeEnum.. 7
OrientationEnum.. 8
PropertyDataTypeEnum... 8
TopologicalViewTypeEnum.. 8

DTNURBS ARRAYS ..8
DtnurbsArrays.. 8

LEAPS PRIMARY CLASSES..9
COMPONENT CLASSES ...9

Component .. 9
ComponentPtr.. 12
ComponentPtrList .. 12
ComponentPtrMap... 12

CONCEPT CLASSES..12
Concept ... 12
ConceptPtr... 16
ConceptPtrMap.. 16
ConceptPtrList ... 17

CONNECTION CLASSES...17
Connection... 17
ConnectionPtr .. 21

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 2 02 APR 1999

ConnectionPtrList... 21
ConnectionPtrMap ... 21

DIAGRAM CLASSES ..21
Diagram ... 21
DiagramPtr... 24
DiagramPtrList ... 24
DiagramPtrMap.. 24

FACTORY CLASSES ..24
Factory... 24
FactoryPtr .. 25
FactoryPtrMap ... 25

SCENARIO CLASSES...25
Scenario .. 25
ScenarioPtr .. 27
ScenarioPtrList .. 27
ScenarioPtrMap ... 27

STUDY CLASSES ..27
Study ... 27
StudyPtr... 30
StudyPtrList ... 30
StudyPtrMap .. 31

SYSTEM CLASSES ..31
System... 31
SystemPtr .. 35
SystemPtrList... 35
SystemPtrMap ... 35

LEAPS GEOMETRY OBJECT STRUCTURE (GOBS)35
COEDGE CLASSES ...35

CoEdge.. 35
CoEdgePtr ... 37
CoEdgePtrList.. 37
CoEdgePtrMap .. 37

COMMONVIEW CLASSES...37
CommonView .. 37
CommonViewPtr .. 42
CommonViewPtrList .. 42
CommonViewPtrMap ... 42

COPOINT CLASSES ..42
CoPoint.. 42
CoPointPtr ... 43
CoPointPtrList.. 43
CoPointPtrMap .. 43

EDGE CLASSES..43
Edge .. 43
EdgePtr.. 46
EdgePtrList .. 46
EdgePtrMap... 46

EDGELOOP CLASSES ...46
EdgeLoop .. 46

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 3 02 APR 1999

EdgeLoopPtr.. 48
EdgeLoopPtrList .. 48
EdgeLoopPtrMap... 48

FACE CLASSES ..48
Face... 48
FacePtr .. 50
FacePtrList... 50
FacePtrMap ... 50

ORIENTEDCLOSEDSHELL CLASSES ...51
OrientedClosedShell .. 51
OrientedClosedShellPtr.. 52
OrientedClosedShellPtrMap... 52
OrientedClosedShellPtrList .. 52

PCURVE CLASSES ..53
Pcurve ... 53
PcurvePtr ... 55
PcurvePtrList ... 55
PcurvePtrMap .. 55

PPOINT CLASSES ...55
Ppoint .. 55
PpointPtr .. 57
PpointPtrList .. 57
PpointPtrMap ... 57

SOLID CLASSES ...57
Solid... 57
SolidPtr .. 59
SolidPtrList... 59
SolidPtrMap ... 59

STRUCTURE CLASSES ..59
Structure .. 59
StructurePtr.. 70
StructurePtrList .. 70
StructurePtrMap... 70

SURFACE CLASSES ..70
Surface .. 70
SurfacePtr.. 72
SurfacePtrList .. 73
SurfacePtrMap... 73

TOPOLOGICALVIEW CLASSES ...73
TopologicalView... 73
TopologicalViewPtr .. 77
TopologicalViewPtrList... 77
TopologicalViewPtrMap ... 77

LEAPS UTILITY CLASSES...77
CONNECTIONITEM CLASSES..77

ConnectionItem.. 77
ConnectionItemList .. 78

CURVE CLASSES..78
Curve ... 78

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 4 02 APR 1999

ERROR CLASS ...80
Error... 80

LOCATION CLASSES ...80
CartesianLocation .. 80
CoEdgeLocation .. 81
CurveLocation.. 82
PcurveLocation .. 82
SurfaceLocation... 83

MATERIAL CLASSES ...84
Material .. 84
MaterialPtr ... 86
MaterialPtrList.. 86
MaterialPtrMap .. 87
MaterialGroup .. 87
MaterialGroupPtr.. 90
MaterialGroupPtrList .. 90
MaterialGroupPtrMap... 90

NAME CLASSES ...91
DateTime ... 91
Name... 91
Note ... 92

NAMEVALUEPAIR CLASSES ..93
NameValuePair.. 93
NameValuePairList .. 93

PROPERTY CLASSES ..93
IntegerScalar ... 93
IntegerSTLVector... 94
Property ... 94
PropertyPtr... 96
PropertyPtrList ... 96
PropertyPtrMap.. 97
PropertyData.. 97
PropertyDataPtr ... 97
PropertyGroup ... 97
PropertyGroupPtr... 99
PropertyGroupPtrList ... 99
PropertyGroupPtrMap.. 99
RealScalar ... 99
RealSTLVector .. 100
SplineData ... 101
String ... 101
StringSTLVector .. 102

SPLINE CLASSES ...102
Spline... 102
SplineDomainVariable.. 103
SplineDomainVariableList .. 104
SplineRangeVariable ... 104
SplineRangeVariableList.. 104

TOOL CLASSES ..105
Tool.. 105

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 5 02 APR 1999

ToolPtr ... 105
ToolPtrList.. 105
ToolPtrMap .. 106

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 6 02 APR 1999

PREFACE

Not Yet Documented

GLOBALS

The Globals Package contains type definitions, enumerations, and constant
definitions used through out LEAPS.

Basic LEAPS Type Definitions

Char8
Char8 is a type definition for a character that is represented by 8 bits. It is
defined as follows: char

CharString
CharString is a type definition for a string. It is defined as follows: std::string

CharStringList
CharStringList is a type definition for a list of CharStrings. CharStringList is
defined as follows: std::vector<CharString>.

Int32
Int32 is a type definition for an integer that is represented by 32 bits. It is defined
as follows: int

Int32List
Uint32List is a type definition for a list of integer numbers. The integers are
represented by 32 bits. It is defined as follows: std::vector<Int32>.

KeyList
KeyList is a type definition for a list of keys. The keys are represented by a
std::string. It is defined as follows: std::vector<std::string>.

Logical
Logical is a type definition for a boolean. It is defined as follows: bool

NameVersionPairList
NameVersionPairList is a type definition for a list of name-version pairs. It is
defined as follows: std::vector<std::pair<std::string, Uint32> >.

Real32
Real32 is a type definition for a real number that is represented by 32 bits. It is
defined as follows: float

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 7 02 APR 1999

Real32List
Real32List is a type definition for a list of real numbers. The real numbers are
represented by 32 bits. It is defined as follows: std::vector<Real32>.

Real64
Real64 is a type definition for a real number that is represented by 64 bits. It is
defined as follows: double

Real64List
Real64List is a type definition for a list of real numbers. The real numbers are
represented by 64 bits. It is defined as follows: std::vector<Real64>.

Uint32
Uint32 is a type definition for an unsigned integer that is represented by 32 bits.
It is defined as follows: unsigned int

Uint32List
Uint32List is a type definition for a list of unsigned integer numbers. The
unsigned integers are represented by 32 bits. It is defined as follows:
std::vector<Uint32>.

UniqueIdList
UniqueIdList is a type definition for a list of unique identifiers. The unique
identifiers are represented by a std::string. UniqueIdList is defined as follows:
std::vector<std::string>.

Basic LEAPS Enumerations

ConnectionItemTypeEnum
ConnectionItemTypeEnum is a type definition for an enumeration that specifies
the kind of connection item. A connection item is either a Component, System,
or Connection object. It is defined as follows:

enum { UndefinedItemType, ComponentItemType, SystemItemType,
ConnectionItemType}

ConnectionTypeEnum
ConnectionTypeEnum is a type definition for an enumeration that specifies the
kind of connection. It is defined as follows:

enum { UnknownConnection = 0, SerialConnection = 10,
ParallelConnection = 20}

DiagramTypeEnum
DiagramTypeEnum is a type definition for an enumeration that specifies the kind
of diagram. It is defined as follows:

enum { UndefinedDiagram = 0, FunctionalDiagram = 10,
PhysicalDiagram = 20}

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 8 02 APR 1999

OrientationEnum
OrientationEnum is a type definition for an enumeration that specifies the
orientation. It is defined as follows:

enum { UnknownOrientation = 0, ClockwiseOrientation = -1,
CounterClockwiseOrientation = 1, InwardOrientation = -1,
OutwardOrientation = 1}

PropertyDataTypeEnum
PropertyDataTypeEnum is a type definition for an enumeration that specifies the
type of property data that is stored. It is defined as follows:

enum { UndefinedPropertyData=0,
RealScalarData=10, RealSTLVectorData=11,
IntegerScalarData=20, IntegerSTLVectorData=21,
StringData=30, StringSTLVectorData=31, SplineData=40}

TopologicalViewTypeEnum
TopologicalViewTypeEnum is a type definition for an enumeration that specifies
the kind of GOBS object (surface, face, or solid) that represents the
TopologicalView.

enum { UnknownObject = 0, SurfaceObject = 1, FaceObject = 2,
SolidObject = 3 }

DTNURBS Arrays
The DTNURBS attributes are public and globally accessible. However, the user
should never modify these attributes because corruption will result. These
attributes can be used with function calls to the DTNURBS Spline Library.

DtnurbsArrays

Public Attributes:

char* cmem
Pointer DTNURBS character memory array.

double* dmem
Pointer to DTNURBS double memory array.

int* imem
Pointer DTNURBS integer memory array.

int maxCmem
The size of DTNURBS character memory array.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 9 02 APR 1999

LEAPS PRIMARY CLASSES

Component Classes

Component
The purpose of the Component class is represent objects that can be thought of
as parts of the concept. For example, a computer console or a gun could be
considered as "components" of the concept. The component has geometry,
properties, and property groups.

Public Attributes:

Name id ()
Name object that identifies the Component object.

CartesianLocation location ()
CartesianLocation (x,y,z) which specifies the location of the geometric centroid of
the Component object in the concept frame of reference.

std::string name ()
Name of the Component object.

Uint32 numberOfConnectionsUsingComponent ()
Number of Connection objects that use this Component object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Component object.

Uint32 numberOfProperties ()
Number of Property objects associated with this object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with Component object.

Uint32 numberOfSystemsUsingComponent ()
Number of System objects that use the Component object.

Real64* orientation ()
Orientation matrix which specifies the orientation of the Component object in the
concept frame of reference.

std::string& uniqueId ()
Unique identifier of the Component object.

Uint32 version ()
Version number of the Component object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Component object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 10 02 APR 1999

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the Component object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the Component object.

void debugPrint ()
Prints the Component object's member values to the error file cerr.

void destroyComponentStructure ()
Destroys the current Structure object that represents the geometric views of the
Component object and creates a new Structure object to represent the
Component object.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this Component object. If only the name is given, it is assumed to be the
unique identifier of the Property object.

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this Component object. If only the name is given, it is assumed to
be the unique identifier of the PropertyGroup object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the
Component object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the Component object, else false. If only the name is given, it is
assumed to be the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the Component object, else false. If only the name
is given, it is assumed to be the unique identifier of the PropertyGroup object.

StructurePtr getComponentStructure ()
Returns a StructurePtr to the Structure object that represents the geometric
views of the Component object.

ConnectionPtr getConnectionUsingComponent (const std::string& name,
Uint32 version = 0)
Returns a ConnectionPtr to the Connection object, given the specified name and
version, that uses this Component object. If only the name is given, it is
assumed to be the unique id of the Connection object.

const ConnectionPtrList& getConnectionsUsingComponent ()
Returns a ConnectionPtrList of all Connection objects that use this Component
object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 11 02 APR 1999

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Component object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Component object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
Component object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the Component object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this Component object. If only the name is
given, it is assumed to be the unique identifier of the Property object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this Component object. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

SystemPtr getSystemUsingComponent (const std::string& name, Uint32
version = 0)
Returns a SystemPtr to the System object, given the specified name and version,
that is uses the Component object. If only the name is given, it is assumed to be
the unique id of the System object.

const SystemPtrList& getSystemsUsingComponent ()
Returns a SystemPtrList of all System objects that use this Component object.

const UniqueIdList& getUidsOfConnectionsUsingComponent ()
A list of unique ids of the Connection objects that use this Component object.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
Component object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the Component object.

const UniqueIdList& getUidsOfSystemsUsingComponent ()
A list of unique ids of the System objects that use this Component object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the
Component object by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Component object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 12 02 APR 1999

ComponentPtr
ComponentPtr is a type definition for a reference pointer to a Component object.

ComponentPtrList
ComponentPtrList is a type definition for a list of reference pointers to
Component objects.

ComponentPtrMap
ComponentPtrMap is a type definition for an associative map between unique
identifiers of Component objects and their reference pointers.

Concept Classes

Concept
The Concept class represents a single concept that is evaluated as part of the
study of the IPT. The Concept class is composed of properties, property groups,
components, systems, and the structure of the concept.

Public Attributes:

Name id ()
Name object that identifies the Concept object.

std::string name ()
Name of the Concept object.

Uint32 numberOfComponents ()
Number of Component objects that are a part of the Concept object.

Uint32 numberOfConnections ()
Number of Connection objects that are associated with the Concept object.

Uint32 numberOfDiagrams ()
Number of Diagram objects that are associated with the Concept object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Concept object.

Uint32 numberOfProperties ()
Number of Property objects associated with the Concept object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the Concept object.

Uint32 numberOfSystems ()
Number of System objects that are part of the Concept object.

std::string& uniqueId ()
Unique identifier of the Concept object.

Uint32 version ()
Version number of the Concept object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 13 02 APR 1999

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Concept object.

ComponentPtr createComponent (const std::string& name, Uint32 version)
Creates a Component object with the given name and version number. This
Component object is made a part of the Concept object and a reference pointer
(ComponentPtr) is returned.

ConnectionPtr createConnection (const std::string& name, Uint32 version)
Creates a Connection object with the given name and version number. This
Connection object is made a part of the Concept object and a reference pointer
(ConnectionPtr) is returned.

ConnectionPtr createConnection (const std::string& name, Uint32 version,
const ConnectionItemList& connectionItemList)
Creates a Connection object with the given name, version number, and
ConnectionItem list. This Connection object is made a part of the Concept object
and a reference pointer (ConnectionPtr) is returned.

DiagramPtr createDiagram (const std::string& name, Uint32 version)
Creates a Diagram object with the given name and version number. This
Diagram object is made a part of the Concept object and a reference pointer
(DiagramPtr) is returned.

DiagramPtr createDiagram (const std::string& name, Uint32 version, const
ConnectionPtr& connection)
Creates a Diagram object with the given name, version number, and Connection
object. This Diagram object is made a part of the Concept object and a
reference pointer (DiagramPtr) is returned.

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the Concept object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the Concept object.

SystemPtr createSystem (const std::string& name, Uint32 version)
Creates a System object with the given name and version number. This System
object is made a part of the Concept object and a reference pointer (SystemPtr)
is returned.

SystemPtr createSystem (const std::string& name, Uint32 version, const
ComponentPtrList& componentList, const SystemPtrList& systemList)
Creates a System object with the given name and version number. This System
object is made a part of the Concept object and a reference pointer (SystemPtr)
is returned.

void debugPrint ()
Prints the Concept object's member values to the error file cerr.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 14 02 APR 1999

void destroyComponent (const std::string& name, Uint32 version = 0)
Destroys the Component object with the given name and version that is
contained by this Concept object. If only the name is given, it is assumed to be
the unique identifier of the Component object.

void destroyConceptStructure ()
Destroys the current Structure object that represents the geometric views of the
Concept object and creates a new Structure object to represent the Concept
object.

void destroyConnection (const std::string& name, Uint32 version = 0)
Destroys the Connection object with the given name and version that is
contained by this Concept object. If only the name is given, it is assumed to be
the unique identifier of the Connection object.

void destroyDiagram (const std::string& name, Uint32 version = 0)
Destroys the Diagram object with the given name and version that is contained
by this Concept object. If only the name is given, it is assumed to be the unique
identifier of the Diagram object.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this Concept object. If only the name is given, it is assumed to be the unique
identifier of the Property object.

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this Concept object. If only the name is given, it is assumed to be
the unique identifier of the PropertyGroup object.

void destroySystem (const std::string& name, Uint32 version = 0)
Destroys the System object with the given name and version that is contained by
this Concept object. If only the name is given, it is assumed to be the unique
identifier of the System object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Concept
object, else false

Logical doesComponentExist (const std::string& name, Uint32 version = 0)
Returns true if the Component object with the given name and version number is
a part of the Concept object, else false. If only the name is given, it is assumed
to be the unique identifier of the Component object.

Logical doesConnectionExist (const std::string& name, Uint32 version = 0)
Returns true if the Connection object with the given name and version number is
a part of the Concept object, else false. If only the name is given, it is assumed
to be the unique identifier of the Connection object.

Logical doesDiagramExist (const std::string& name, Uint32 version = 0)
Returns true if the Diagram object with the given name and version number is a
part of the Concept object, else false. If only the name is given, it is assumed to
be the unique identifier of the Diagram object.

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the Concept object, else false. If only the name is given, it is
assumed to be the unique identifier of the Property object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 15 02 APR 1999

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the Concept object, else false. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

Logical doesSystemExist (const std::string& name, Uint32 version = 0)
Returns true if the System object with the given name and version number is a
part of the Concept object, else false. If only the name is given, it is assumed to
be the unique identifier of the System object.

ComponentPtr getComponent (const std::string& name, Uint32 version = 0)
Returns a ComponentPtr to the Component object, which is specified by the
given name and version, that is part of Concept object. If only the name is given,
it is assumed to be the unique id of the Component object.

StructurePtr getConceptStructure ()
Returns a StructurePtr to the Structure object that represents the geometric
views of the Concept object.

ConnectionPtr getConnection (const std::string& name, Uint32 version = 0)
Returns a ConnectionPtr to the Connection object, which is specified by the
given name and version, that is part of Concept object. If only the name is given,
it is assumed to be the unique id of the Connection object.

DiagramPtr getDiagram (const std::string& name, Uint32 version = 0)
Returns a DiagramPtr to the Diagram object, which is specified by the given
name and version, that is part of Concept object. If only the name is given, it is
assumed to be the unique id of the Diagram object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Concept object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Concept object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfComponents ()
Returns the NameVersionPairs of Component objects that are part of the
Concept object.

const NameVersionPairList& getNameVersionPairsOfConnections ()
Returns the NameVersionPairs of Connection objects that are part of the
Concept object.

const NameVersionPairList& getNameVersionPairsOfDiagrams ()
Returns the NameVersionPairs of Diagrams objects that are part of the Concept
object.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
Concept object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the Concept object.

const NameVersionPairList& getNameVersionPairsOfSystems ()
Returns the NameVersionPairs of System objects that are part of the Concept
object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 16 02 APR 1999

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this Concept object. If only the name is
given, it is assumed to be the unique identifier of the Property object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this Concept object. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

SystemPtr getSystem (const std::string& name, Uint32 version = 0)
Returns a SystemPtr to the System object, which is specified by the given name
and version, that is part of Concept object. If only the name is given, it is
assumed to be the unique id of the System object.

const UniqueIdList& getUidsOfComponents ()
Returns the unique identifies of Component objects that are part of the Concept
object.

const UniqueIdList& getUidsOfConnections ()
Returns the unique identifies of Connection objects that are part of the Concept
object.

const UniqueIdList& getUidsOfDiagrams ()
Returns the unique identifies of Diagram objects that are part of the Concept
object.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
Concept object..

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the Concept object.

const UniqueIdList& getUidsOfSystems ()
Returns the unique identifies of System objects that are part of the Concept
object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Concept
object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Concept object.

ConceptPtr
ConceptPtr is a type definition for a reference pointer to a Concept object.

ConceptPtrMap
ConceptPtrMap is a type definition for an associative map between unique
identifiers of Concept objects and their reference pointers. It is defined as
follows:

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 17 02 APR 1999

std::map<std::string, ConceptPtr>

ConceptPtrList
ConceptPtrList is a type definition for a list of reference pointers to Concept
objects.. It is defined as follows:

std::vector<ConceptPtr>.

Connection Classes

Connection
The Connection class provides information on how the contained Component,
System, and Connection objects are connected (i.e. serial or parallel).

Public Attributes:

ConnectionTypeEnum connectionType ()
Returns the connection type (parallel or serial)

void connectionType (ConnectionTypeEnum type)
Sets the connection type to be parallel or serial

Name id ()
Name object that identifies the Connection object.

std::string name ()
Name of the Connection object.

Uint32 numberOfComponents ()
Number of Component objects that are part of the Connection object.

Uint32 numberOfConnectionItems ()
Number of items (systems, components and/or connections) that are part of the
Connection object.

Uint32 numberOfConnections ()
Number of Connection objects that are part of the Connection object.

Uint32 numberOfConnectionsUsingConnection ()
Number of Connection objects that use this Connection object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Connection object.

Uint32 numberOfProperties ()
Number of Property objects associated with the Connection object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the Connection object.

Uint32 numberOfSystems ()
Number of System objects that are part of the Connection object.

Uint32 operationalNumber ()
Operational number is the number of connection items that are needed for a
parallel connection to be operational.

std::string& uniqueId ()
Unique identifier of the Connection object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 18 02 APR 1999

Uint32 version ()
Version number of the Connection object.

Public Operations:

void addItem (const ComponentPtr& componentToAdd)
Adds the association of the given Component object with the Connection object.

void addItem (const ConnectionPtr& connectionToAdd)
Adds the association of the given Connection object with the Connection object.

void addItem (const SystemPtr& systemToAdd)
Adds the association of the given System object with the Connection object.

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Connection object.

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the Connection object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the Connection object.

void debugPrint ()
Prints the Connection object's member values to the error file cerr.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this Connection object. If only the name is given, it is assumed to be the
unique identifier of the Property object.

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this Connection object. If only the name is given, it is assumed to
be the unique identifier of the PropertyGroup object.

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the Connection object, else false. If only the name is given, it is
assumed to be the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the Connection object, else false. If only the name
is given, it is assumed to be the unique identifier of the PropertyGroup object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the
Connection object, else false

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 19 02 APR 1999

ComponentPtr getComponent (const std::string& name, Uint32 version = 0)
Returns a ComponentPtr to the Component object, which is specified by the
given name and version, that is part of Connection object. If only the name is
given, it is assumed to be the unique id of the Component object.

const ComponentPtrList& getComponents ()
Returns a ComponentPtrList of all Component objects that compose the
Connection object.

ConnectionPtr getConnection (const std::string& name, Uint32 version = 0)
Returns a ConnectionPtr to the Connection object, which is specified by the
given name and version, that is part of Connection object. If only the name is
given, it is assumed to be the unique id of the Connection object.

const ConnectionItemList& getConnectionItems ()
Returns a ConnectionItemList of all items (systems, components, and/or
connctions) that compose the Connection object.

const ConnectionPtrList& getConnections ()
Returns a ConnectionPtrList of all Connection objects that compose the
Connection object.

const ConnectionPtrList& getConnectionsUsingConnection ()
Returns a ConnectionPtrList of all Connection objects that use this Connection
object.

ConnectionPtr getConnectionUsingConnection (const std::string& name,
Uint32 version = 0)
Returns a ConnectionPtr to the Connection object, given the specified name and
version, that uses this Connection object. If only the name is given, it is assumed
to be the unique id of the Connection object.

DiagramPtr getDiagramUsingConnection ()
Returns a DiagramPtr to the Diagram object, that uses this Connection object as
its root connection. If the Connection object is not a root connection, an invalid
DiagramPtr is returned.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Connection object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Connection object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
Connection object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the Connection object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this Connection object. If only the name is
given, it is assumed to be the unique identifier of the Property object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 20 02 APR 1999

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this Connection object. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

SystemPtr getSystem (const std::string& name, Uint32 version = 0)
Returns a SystemPtr to the System object, which is specified by the given name
and version, that is part of Connection object. If only the name is given, it is the
unique id of the System object.

const SystemPtrList& getSystems ()
Returns a SystemPtrList of all System objects that compose the Connection
object.

const UniqueIdList& getUidsOfComponents ()
A list of unique ids of the Component objects that compose the Connection
object.

const UniqueIdList& getUidsOfConnections ()
A list of unique ids of the Connection objects that compose the Connection
object.

const UniqueIdList& getUidsOfConnectionsUsingConnection ()
A list of unique ids of the Connection objects that use this Connection object.

const std::string& getUidOfDiagramUsingConnection ()
If the Connection object is used as the root connection of a Diagram object, the
unique id of the Diagram object is returned. If the Connection object is not used
as a root connection an empty string is returned.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
Connection object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the Connection object.

const UniqueIdList& getUidsOfSystems ()
A list of unique ids of the System objects that compose the Connection object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the
Connection object, by replacing the comment with the given comment.

void removeItem (const ComponentPtr& componentToRemove)
Removes the association of the given Component object with the Connection
object.

void removeItem (const SystemPtr& systemToRemove)
Removes the association of the given System object with the Connection object.

void removeItem (const ConnectionPtr& connectionToRemove)
Removes the association of the given Connection object with the Connection
object.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Connection object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 21 02 APR 1999

ConnectionPtr
ConnectionPtr is a type definition for a reference pointer to a Connection object.

ConnectionPtrList
ConnectionPtrList is a type definition for a list of reference pointers to Connection
objects.. It is defined as follows:

std::vector<ConnectionPtr>.

ConnectionPtrMap
ConnectionPtrMap is a type definition for an associative map between unique
identifiers of Connection objects and their reference pointers.. It is defined as
follows:

std::map<std::string, ConnectionPtr>

Diagram Classes

Diagram
The Diagram class provides the schematic information about a system.

Public Attributes:

DiagramTypeEnum diagramType ()
Returns the type of the diagram.

void diagramType (DiagramTypeEnum type)
Sets the diagram type to be functional or physical.

Name id ()
Name object that identifies the Diagram object.

std::string name ()
Name of the Diagram object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Diagram object.

Uint32 numberOfProperties ()
Number of Property objects associated with the Diagram object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the Diagram object.

Uint32 numberOfSystemsUsingDiagram ()
Number of System objects that use the Diagram object.

std::string& uniqueId ()
Unique identifier of the Diagram object.

Uint32 version ()
Version number of the Diagram object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 22 02 APR 1999

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Diagram object.

void addRootConnection (const ConnectionPtr& rootConnection)
Adds the given Connection object as the root connection of this Diagram object.

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the Diagram object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the Diagram object.

void debugPrint ()
Prints the Diagram object's member values to the error file cerr.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this Diagram object. If only the name is given, it is assumed to be the unique
identifier of the Property object.

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this Diagram object. If only the name is given, it is assumed to be
the unique identifier of the PropertyGroup object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Diagram
object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the Diagram object, else false. If only the name is given, it is
assumed to be the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the Diagram object, else false. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

Logical doesRootConnectionExist ()
Returns true if the Diagram object has a root Connection object associated with
the it, else false.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Diagram object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Diagram object in the given
arguments.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 23 02 APR 1999

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
Diagram object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the Diagram object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this Diagram object. If only the name is
given, it is assumed to be the unique identifier of the Property object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this Diagram object. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

ConnectionPtr getRootConnection ()
Returns a ConnectionPtr to the Connection object, that is the root connection of
the Diagram object.

const SystemPtrList& getSystemsUsingDiagram ()
Returns a SystemPtrList of all System objects that use the Diagram object.

SystemPtr getSystemUsingDiagram (const std::string& name, Uint32
version = 0)
Returns a SystemPtr to the System object, which is specified by the given name
and version, that uses the Diagram object. If only the name is given, it is the
unique id of the System object.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
Diagram object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the Diagram object.

const std::string& getUidOfRootConnection ()
The unique id of the Connection object that is associated with the Diagram object
as the root connection is returned. An empty string is returned if there is no root
connection.

const UniqueIdList& getUidsOfSystemsUsingDiagram ()
A list of unique ids of the System objects that use the Diagram object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Diagram
object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Diagram object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 24 02 APR 1999

void removeRootConnection ()
Removes the Connection object that is associated with the Diagram object as its
root connection.

DiagramPtr
DiagramPtr is a type definition for a reference pointer to a Diagram object.

DiagramPtrList
DiagramPtrList is a type definition for a list of reference pointers to Diagram
objects. It is defined as follows:

std::vector<DiagramPtr>.

DiagramPtrMap
DiagramPtrMap is a type definition for an associative map between unique
identifiers of Diagram objects and their reference pointers. It is defined as
follows:

std::map<std::string, DiagramPtr>

Factory Classes
The Factory Package contains the class that manages the LEAPS database.

Factory
The purpose of a Factory object is to manage a Leaps Database.

Public Attributes:

Uint32 numberOfStudies ()
Number of Study objects created by the Factory.

Public Operations:

FactoryPtr create (const std::string& dbName, Int32 maxCmem = 1000000,
Int32 maxImem = 5000000, Int32 maxDmem = 2500000)
Creates a reference pointer (FactoryPtr) to a Leaps factory object to manage the
given Leaps database name.

StudyPtr createStudy (const std::string& name, Uint32 version)
Creates a Study object with the given name and version number and returns a
reference pointer (StudyPtr) to the object.

void destroyStudy (const std::string& name, Uint32 version = 0)
Destroys the Study object with the given name and version number that is part of
Factory object. If only the name is given, it is assumed to be the unique identifier
of the Study object.

Logical doesStudyExist (const std::string& name, Uint32 version = 0)
Returns true if Study object exists, else false

const NameVersionPairList& getNameVersionPairsOfStudies ()
Returns a list of the NameVersionPairs of the Study objects that are a part of the
Factory.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 25 02 APR 1999

StudyPtr getStudy (const std::string& name, Uint32 version = 0)
Returns a StudyPtr to the Study object, which is specified by the given name and
version, that is part of Factory object. If only the name is given, it is the unique
identifier of the Study object.

const UniqueIdList& getUidsOfStudies ()
Returns a list of the unique identifiers of the Study objects that are a part of the
Factory.

FactoryPtr
FactoryPtr is a type definition for a reference pointer to a Factory object.

FactoryPtrMap
FactoryPtrMap is a type definition for an associative map between the database
names of Factory objects and their reference pointers. It is defined as follows:

std::map<std::string, FactoryPtr>

Scenario Classes

Scenario
The purpose of the Scenario Class is to provide the operational situation in which
the concepts of the study are required to operate. The operational situation
provides the context of how the concepts are to be evaluated and the measures
of effectiveness.

Public Attributes:

Name id ()
Name object that identifies the Scenario object.

std::string name ()
Name of the Scenario object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Scenario object.

Uint32 numberOfProperties ()
Number of Property objects associated with the Scenario object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the Scenario object.

std::string& uniqueId ()
Unique identifier of the Sceanrio object.

Uint32 version ()
Version number of the Scenario object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Scenario object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 26 02 APR 1999

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the Scenario object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the Scenario object.

void debugPrint ()
Prints the Scenario object's member values to the error file cerr.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this Scenario object. If only the name is given, it is assumed to be the unique
identifier of the Property object.

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this Scenario object. If only the name is given, it is assumed to be
the unique identifier of the PropertyGroup object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Scenario
object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the Scenario object, else false. If only the name is given, it is
assumed to be the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the Scenario object, else false. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Scenario object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Scenario object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
Scenario object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the Scenario object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 27 02 APR 1999

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this Scenario object. If only the name is
given, it is assumed to be the unique identifier of the Property object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this Scenario object. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
Scenario object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the Scenario object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Scenario
object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Scenario object.

ScenarioPtr
ScenarioPtr is a type definition for a reference pointer to a Scenario object.

ScenarioPtrList
ScenarioPtrList is a type definition for a list of reference pointers to Scenario
objects.. It is defined as follows:

std::vector<ScenarioPtr>

ScenarioPtrMap
ScenarioPtrMap is a type definition for an associative map between unique
identifiers of Scenario objects and their reference pointers.. It is defined as
follows:

std::map<std::string, ScenarioPtr>

Study Classes
The Study Package contains classes that compose the Study Class.

Study
The integrated process team (IPT) is created to perform a study. The Study
class is used to represent this study. The Study class is composed of properties,
property groups, concepts, and scenarios.

Public Attributes:

Name id ()
Name object that identifies the Study object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 28 02 APR 1999

std::string name ()
Name of the Study object.

Uint32 numberOfConcepts ()
Number of Concept objects that are a part of the Study object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Study object.

Uint32 numberOfProperties ()
Number of Property objects associated with the Study object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the Study object.

Uint32 numberOfScenarios ()
Number of Scenario objects that are a part of the Study object.

std::string& uniqueId ()
Unique identifier of the Study object.

Uint32 version ()
Version number of the Study object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Study object.

ConceptPtr createConcept (const std::string& name, Uint32 version)
Creates a Concept object with the given name and version number. This
Concept object is made a part of the Study object and a reference pointer
(ConceptPtr) is returned.

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the Study object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the Study object.

ScenarioPtr createScenario (const std::string& name, Uint32 version)
Creates a Scenario object with the given name and version number. This
Scenario object is made a part of the Study object and a reference pointer
(ScenarioPtr) is returned.

void destroyConcept (const std::string& name, Uint32 version = 0)
Destroys the Concept object with the given name and version that is contained
by this Study object. If only the name is given, it is assumed to be the unique
identifier of the Concept object.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this Study object. If only the name is given, it is assumed to be the unique
identifier of the Property object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 29 02 APR 1999

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this Study object. If only the name is given, it is assumed to be the
unique identifier of the PropertyGroup object.

void destroyScenario (const std::string& name, Uint32 version = 0)
Destroys the Scenario object with the given name and version that is contained
by this Study object. If only the name is given, it is assumed to be the unique
identifier of the Scenario object.

void debugPrint ()
Prints the Study object's member values to the error file cerr.

Logical doesConceptExist (const std::string& name, Uint32 version = 0)
Returns true if the Concept object with the given name and version number is a
associated with the Study object, else false. If only the name is given, it is
assumed to be the unique identifier of the Concept object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Study
object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the Study object, else false. If only the name is given, it is
assumed to be the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the Study object, else false. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

Logical doesScenarioExist (const std::string& name, Uint32 version = 0)
Returns true if the Scenario object with the given name and version number is a
associated with the Study object, else false. If only the name is given, it is
assumed to be the unique identifier of the Scenario object.

ConceptPtr getConcept (const std::string& name, Uint32 version = 0)
Returns a reference pointer (ConceptPtr) to the Concept object, which is
specified by the given name and version, that is part of Study object. If only the
name is given, it is assumed to be the unique id of the Concept object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Study object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Study object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfConcepts ()
Returns the NameVersionParis of Concept objects that are associated with the
Study object.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
Study object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the Study object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 30 02 APR 1999

const NameVersionPairList& getNameVersionPairsOfScenarios ()
Returns the NameVersionParis of Scenario objects that are associated with the
Study object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this Study object. If only the name is given,
it is assumed to be the unique identifier of the Property object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this Study object. If only the name is given,
it is assumed to be the unique identifier of the PropertyGroup object.

ScenarioPtr getScenario (const std::string& name, Uint32 version = 0)
Returns a reference pointer (ScenarioPtr) to the Scenario object, which is
specified by the given name and version, that is part of Study object. If only the
name is given, it is assumed to be the unique id of the Scenario object.

const UniqueIdList& getUidsOfConcepts ()
Returns the unique identifies of Concept objects that are associated with the
Study object.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
Study object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the Study object.

const UniqueIdList& getUidsOfScenarios ()
Returns the unique identifies of Scenario objects that are associated with the
Study object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Study
object by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Study object.

StudyPtr
StudyPtr is a type definition for a reference pointer to a Study object.

StudyPtrList
StudyPtrList is a type definition for a list of reference pointers to Study objects. It
is defined as follows:

std::vector<StudyPtr>.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 31 02 APR 1999

StudyPtrMap
StudyPtrMap is a type definition for an associative map between unique
identifiers of Study objects and their reference pointers. It is defined as follows:

std::map<std::string, StudyPtr>.

System Classes

System
The System class represents those objects that are viewed as systems of a
concept. The System class is composed of subsystems and/or components.
The system has properties and a component view of the system.

Public Attributes:

Name id ()
Name object that identifies the System object.

std::string name ()
Name of the System object.

Uint32 numberOfConnectionsUsingSystem ()
Number of Connection objects that use this System object.

Uint32 numberOfDiagrams ()
Number of Diagram objects that are a part of the System object.

Uint32 numberOfNotes ()
Number of Note objects associated with the System object.

Uint32 numberOfProperties ()
Number of Property objects associated with the System object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the System object.

Uint32 numberOfComponents ()
Number of Component objects that compose the System object.

Uint32 numberOfSystems ()
Number of System objects that compose the System object.

Uint32 numberOfSystemsUsingSystem ()
Number of System objects that use this System object.

std::string& uniqueId ()
Unique identifier of the System object.

Uint32 version ()
Version number of the System object.

Public Operations:

void addComponent (const ComponentPtr& componentToAdd)
Adds the association of the given Component object with the System object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 32 02 APR 1999

void addComponents (const ComponentPtrList& componentListToAdd)
Adds the association of the given list of Component objects with the System
object.

void addDiagram (const DiagramPtr& diagramToAdd)
Adds the association of the given Diagram object with the System object.

void addDiagrams (const DiagramPtrList& diagramListToAdd)
Adds the association of the given list of Diagram objects with the System object.

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the System object.

void addSystem (const SystemPtr& systemToAdd)
Adds the association of the given System object with the System object.

void addSystems (const SystemPtrList& systemListToAdd)
Adds the association of the given list of System objects with the System object.

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the System object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the System object.

void debugPrint ()
Prints the System object's member values to the error file cerr.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this System object. If only the name is given, it is assumed to be the unique
identifier of the Property object.

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this System object. If only the name is given, it is assumed to be
the unique identifier of the PropertyGroup object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the System
object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the System object, else false. If only the name is given, it is
assumed to be the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the System object, else false. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 33 02 APR 1999

ComponentPtr getComponent (const std::string& name, Uint32 version = 0)
Returns a ComponentPtr to the Component object, which is specified by the
given name and version, that is part of System object. If only the name is given,
it is the unique id of the Component object.

const ComponentPtrList& getComponents ()
A list of reference pointers (ComponentPtrList) to all Component objects that
compose the System object is returned.

const ConnectionPtrList& getConnectionsUsingSystem ()
Returns a ConnectionPtrList of all Connection objects that use this System
object.

ConnectionPtr getConnectionUsingSystem (const std::string& name, Uint32
version = 0)
Returns a ConnectionPtr to the Connection object, given the specified name and
version, that uses this System object. If only the name is given, it is assumed to
be the unique id of the Connection object.

DiagramPtr getDiagram (const std::string& name, Uint32 version = 0)
Returns a DiagramPtr to the Diagram object, which is specified by the given
name and version, that is associated with the System object. If only the name is
given, it is assumed to be the unique id of the Diagram object.

const DiagramPtrList& getDiagrams ()
Returns a DiagramPtrList of all Diagram objects that are associated with the
System object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the System object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the System object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
System object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the System object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this System object. If only the name is
given, it is assumed to be the unique identifier of the Property object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this System object. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

SystemPtr getSystem (const std::string& name, Uint32 version = 0)
Returns a SystemPtr to the System object, which is specified by the given name
and version, that is part of System object. If only the name is given, it is
assumed to be the unique id of the System object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 34 02 APR 1999

const SystemPtrList& getSystems ()
Returns a SystemPtrList of all System objects that compose the System object.

const SystemPtrList& getSystemsUsingSystem ()
Returns a SystemPtrList of all System objects that use this System object.

SystemPtr getSystemUsingSystem (const std::string& name, Uint32 version
= 0)
Returns a SystemPtr to the System object, given the specified name and version,
that is used by the System object. If only the name is given, it is assumed to be
the unique id of the System object.

const UniqueIdList& getUidsOfComponents ()
A list of unique ids of the components that compose the system is returned.

const UniqueIdList& getUidsOfConnectionsUsingSystem ()
A list of unique ids of the Connection objects that use this System object.

const UniqueIdList& getUidsOfDiagrams ()
A list of unique ids of the diagrams that are associated with the system.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
System object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the System object.

const UniqueIdList& getUidsOfSystems ()
A list of unique ids of the systems that compose the system is returned.

const UniqueIdList& getUidsOfSystemsUsingSystem ()
A list of unique ids of the systems that use this system.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the System
object by replacing the comment with the given comment.

void removeComponent (const ComponentPtr& componentToRemove)
Removes the association of the given Component object with the System object.

void removeComponents (const ComponentPtrList&
componentListToRemove)
Removes the association of the given list of Component objects with the System
object.

void removeDiagram (const DiagramPtr& diagramToRemove)
Removes the association of the given Diagram object with the System object.

void removeDiagrams (const DiagramPtrList& diagramListToRemove)
Removes the association of the given list of Diagram objects with the System
object.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the System object.

void removeSystem (const SystemPtr& systemToRemove)
Removes the association of the given System object with the System object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 35 02 APR 1999

void removeSystems (const SystemPtrList& systemListToRemove)
Removes the association of the given list of System objects with the System
object.

SystemPtr
SystemPtr is a type definition for a reference pointer to a System object.

SystemPtrList
SystemPtrList is a type definition for a list of reference pointers to System
objects. It is defined as follows:

std::vector<SystemPtr>.

SystemPtrMap
SystemPtrMap is a type definition for an associative map between unique
identifiers of System objects and their reference pointers. It is defined as follows:

std::map<std::string, SystemPtr>.

LEAPS GEOMETRY OBJECT STRUCTURE (GOBS)

Gobs Package contains classes that implement the Geometry Object Structure
(GOBS).

CoEdge Classes

CoEdge
A CoEdge object defines the relationship between two or more Edges. The
relationship is defined where a CoEdge knows 1) all Edges that compose it; and
2) the equivalent Cartesian location on all member Edges, expressed as a
parametric location on the underlying Pcurve, for any location on the CoEdge.
The CoEdge is used to allow traversal across Surfaces or Faces and defines
explicitly an association between two or more Surfaces or Faces.

Derived from Spline

Public Attributes:

Logical consideredStraight (const Real64 tolerance = 0.001)
Returns true if the CoEdge object is straight within the given tolerance, else false.

CartesianLocation endLocation ()
The cartesian location (x, y, z) that ends the CoEdge object.

Name id ()
Name object that identifies the CoEdge object.

std::string name ()
Name of the CoEdge object.

Uint32 numberOfEdges ()
Number of Edge objects that compose the CoEdge object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 36 02 APR 1999

Uint32 numberOfNotes ()
Number of Note objects associated with the CoEdge object.

CartesianLocation startLocation ()
The cartesian location (x, y, z) that starts the CoEdge object.

std::string& uniqueId ()
Unique identifier of the CoEdge object.

Uint32 version ()
Version number of the CoEdge object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the CoEdge object.

void debugPrint ()
Prints the CoEdge object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the CoEdge
object, else false

std::pair<Real64, std::vector<PcurveLocation> > evlForCoEdgeLoc (const
Real64 s)
Evaluate CoEdge for PcurveLocations at the given s. A STL pair is returned
where the first element is the parametric value s at which the CoEdge was
evaluated and the second element is a STL vector of PcurveLocation objects.

const std::vector<std::vector <PcurveLocation> >& evlAtEqualParametric
(Uint32 numLoc = 2)
Evaluate CoEdge for surface (u,v) and (x, y, z) given a number of points. A STL
vector of STL vectors of PcurveLocation is returned. A PcurveLocation is defined
as a STL vector of data where the curve domain parameter s, is at index 0, the
surface domain parameter u, is at index 1, the surface domain parameter v, is at
index 2, the surface range parameter x is at index 3, the surface range
parameter y is at index 4, and the surface range parameter z is at index 5.

EdgePtr getEdge (const std::string& name, Uint32 version = 0)
Returns a reference pointer (EdgePtr) to the Edge object with the specified name
and version that composes the CoEdge object. If only the name is given, it is
assumed to be the unique identifier of the Edge object.

const EdgePtrList& getEdges ()
Returns a list (EdgePtrList) of reference pointers to Edge objects that compose
the CoEdge object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the CoEdge object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the CoEdge object in the given
arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 37 02 APR 1999

const PcurvePtrList& getPcurves ()
Returns a list (PcurvePtrList) of reference pointers to Pcurve objects that are a
part of the CoEdge object.

const SurfacePtrList& getSurfaces ()
Returns a list (SurfacePtrList) of reference pointers to Surface objects that are a
part of the CoEdge object.

const UniqueIdList& getUidsOfEdges ()
Returns a list (UniqueIdList) of unique identifiers of Edge objects that compose
the CoEdge object.

const UniqueIdList& getUidsOfPcurves ()
Returns a list (UniqueIdList) of unique identifiers of Pcurve objects that are
associated with the CoEdge object.

const UniqueIdList& getUidsOfSurfaces ()
Returns a list (UniqueIdList) of unique identifiers of Surface objects that are part
of the CoEdge object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the CoEdge
object by replacing the comment with the given comment.

void removeEdge (EdgePtr& edgeToRemove)
Removes the association of the given Edge object with the CoEdge object.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the CoEdge object.

CoEdgePtr
CoEdgePtr is a type definition for a reference pointer to a CoEdge object.

CoEdgePtrList
CoEdgePtrList is a type definition for a list of reference pointers to CoEdge
objects.

CoEdgePtrMap
CoEdgePtrMap is a type definition for an associative map between unique
identifiers of CoEdge objects and their reference pointers.

CommonView Classes

CommonView
The CommonView class provides a logical view of the structure. The Common
View class is composed of TopologicalView objects and/or other CommonView
objects.

Public Attributes:

Name id ()
Name object that identifies the CommonView object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 38 02 APR 1999

std::string name ()
Name of the CommonView object.

Uint32 numberOfCommonViews ()
Number of CommonView objects that compose the CommonView object.

Uint32 numberOfCommonViewsUsingCommonView ()
Number of CommonView objects that use the CommonView object.

Uint32 numberOfNotes ()
Number of Note objects associated with the CommonView object.

Uint32 numberOfMaterials ()
Number of Material objects associated with the CommonView object.

Uint32 numberOfMaterialGroups ()
Number of MaterialGroup objects associated with the CommonView object.

Uint32 numberOfProperties ()
Number of Property objects associated with the CommonView object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the CommonView object.

Uint32 numberOfTopologicalViews ()
Number of TopologicalView objects that compose the CommonView object.

std::string uniqueId ()
Unique identifier of the CommonView object.

Uint32 version ()
Version number of the CommonView object.

Public Operations:

void addCommonView (const CommonViewPtr& commonViewToAdd)
Adds the association of the given CommonView object with the CommonView
object.

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the CommonView object.

void addTopologicalView (const TopologicalViewPtr&
topologicalViewToAdd)
Adds the association of the given TopologicalView object with the CommonView
object.

MaterialPtr createMaterial (const std::string& name, Uint32 version)
Creates a Material object with the given name and version. This object is
associated with the CommonView object.

MaterialGroupPtr createMaterialGroup (const std::string& name, Uint32
version, const MaterialPtrList& materialData, const MaterialGroupPtrList&
materialGroupData)
Creates a MaterialGroup object with the given name, version, and a list of
reference pointers to MaterialGroup and Material objects. This MaterialGroup
object is associated with the CommonView object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 39 02 APR 1999

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the CommonView object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the CommonView object.

void debugPrint ()
Prints the CommonView object's member values to the error file cerr.

void destroyMaterial (const std::string& name, Uint32 version = 0)
Destroys the Material object with the given name and version that is contained by
this CommonView object. If only the name is given, it is assumed to be the
unique identifier of the Material object.

void destroyMaterialGroup (const std::string& name, Uint32 version = 0)
Destroys the MaterialGroup object with the given name and version that is
contained by this CommonView object. If only the name is given, it is the unique
identifier of the MaterialGroup object.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this CommonView object. If only the name is given, it is assumed to be the
unique identifier of the Property object.

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this CommonView object. If only the name is given, it is the unique
identifier of the PropertyGroup object.

Logical doesMaterialExist (const std::string& name, Uint32 version = 0)
Returns true if the Material object with the given name and version number is a
associated with the CommonView object, else false. If only the name is given, it
is the unique identifier of the Material object.

Logical doesMaterialGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the MaterialGroup object with the given name and version number
is a associated with the CommonView object, else false. If only the name is
given, it is the unique identifier of the MaterialGroup object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the
CommonView object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the CommonView object, else false. If only the name is given, it
is the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the CommonView object, else false. If only the
name is given, it is the unique identifier of the PropertyGroup object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 40 02 APR 1999

CommonViewPtr getCommonView (const std::string& name, Uint32 version =
0)
Returns a CommonViewPtr to the CommonView object, which is specified by the
given name and version, that is part of CommonView object. If only the name is
given, it is the unique id of the CommonView object.

const CommonViewPtrList& getCommonViews ()
Returns a CommonViewPtrList of all CommonView objects that compose the
CommonView object.

const CommonViewPtrList& getCommonViewsUsingCommonView ()
Returns a CommonViewPtrList of all CommonView objects that the
CommonView object is a part of.

CommonViewPtr getCommonViewUsingCommonView (const std::string&
name, Uint32 version = 0)
Returns a CommonViewPtr to the CommonView object, given the specified name
and version, that the CommonView object is a part of. If only the name is given,
it is assumed to be the unique id of the CommonView object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the CommonView object.

MaterialPtr getMaterial (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Material object with the given name and
version number that is contained by this CommonView object. If only the name
is given, it is the unique identifier of the Material object.

MaterialGroupPtr getMaterialGroup (const std::string& name, Uint32 version
= 0)
Returns a reference pointer to the MaterialGroup object with the given name and
version number that is contained by this CommonView object. If only the name
is given, it is assumed to be the unique identifier of the MaterialGroup object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the CommonView object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfMaterials ()
Returns the NameVersionParis of Material objects that are associated with the
CommonView object.

const NameVersionPairList& getNameVersionPairsOfMaterialGroups ()
Returns the NameVersionPairs of MaterialGroup objects that are associated with
the CommonView object.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
CommonView object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the CommonView object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this CommonView object. If only the name
is given, it is assumed to be the unique identifier of the Property object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 41 02 APR 1999

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this CommonView object. If only the name
is given, it is assumed to be the unique identifier of the PropertyGroup object.

TopologicalViewPtr getTopologicalView (const std::string& name, Uint32
version = 0)
Returns a TopologicalViewPtr to the TopologicalView object, which is specified
by the given name and version, that is part of CommonView object. If only the
name is given, it is the unique id of the TopologicalView object.

const TopologicalViewPtrList& getTopologicalViews ()
Returns a TopologicalViewPtrList of all ToplogicalView objects that compose the
CommonView object.

const UniqueIdList& getUidsOfCommonViews ()
A list of unique ids of the common views that are compose the common view.

const UniqueIdList& getUidsOfCommonViewsUsingCommonView ()
A list of unique ids of the common views that the common view is a part of.

const UniqueIdList& getUidsOfMaterials ()
Returns the unique identifies of Material objects that are associated with the
CommonView object.

const UniqueIdList& getUidsOfMaterialGroups ()
Returns the unique identifies of MaterialGroup objects that are associated with
the CommonView object.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
CommonView object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the CommonView object.

const UniqueIdList& getUidsOfTopologicalViews ()
A list of unique ids of the topological views that are compose the common view.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the
CommonView object by replacing the comment with the given comment.

void removeCommonView (const CommonViewPtr&
commonViewToRemove)
Removes the association of a CommonlView object with the CommonView
object.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the CommonView object.

void removeTopologicalView (const TopologicalViewPtr&
topologicalViewToRemove)
Removes the association of a TopologicalView object with the CommonView
object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 42 02 APR 1999

CommonViewPtr
CommonViewPtr is a type definition for a reference pointer to a CommonView
object.

CommonViewPtrList
CommonViewPtrList is a type definition for a list of reference pointers to
CommonView objects.

CommonViewPtrMap
CommonViewPtrMap is a type definition for an associative map between unique
identifiers of CommonView objects and their reference pointers.

CoPoint Classes

CoPoint
A CoPoint defines the CartesianLocation equivalent for a list of Ppoint objects.

Public Attributes:

Name id ()
Name object that identifies the CoPoint object.

CartesianLocation location ()
CartesianLocation (x,y,z) which specifies the location of the CoPoint object in
model space.

std::string name ()
Name of the CoPoint object.

Uint32 numberOfNotes ()
Number of Note objects associated with the CoPoint object.

Uint32 numberOfPpoints ()
Number of Ppoint objects that compose the CoPoint object.

std::string& uniqueId ()
Unique identifier of the CoPoint object.

Uint32 version ()
Version number of the CoPoint object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the CoPoint object.

void addPpoint (const PpointPtr& ppointToAdd)
Adds the association of the given Ppoint object with the CoPoint object.

void debugPrint ()
Prints the CoPoint object's member values to the error file cerr.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 43 02 APR 1999

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the CoPoint
object, else false

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the CoPoint object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the CoPoint object in the given
arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PpointPtr getPpoint (const std::string& name, Uint32 version = 0)
Returns a reference pointer (PpointPtr) to the Ppoint object, which is specified by
the given name and version, that is part of CoPoint object. If only the name is
given, it is assumed the unique identifier of the Ppoint object.

const PpointPtrList& getPpoints ()
Returns a list (PpointPtrList) of reference pointers to Ppoint objects that compose
the CoPoint object

const UniqueIdList& getUidsOfPpoints ()
Returns a list (UniqueIdList) of the unique identifiers to the Ppoint objects that
compose the Ppoint object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the CoPoint
object by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the CoPoint object.

void removePpoint (const PpointPtr& ppointToRemove)
Removes the association of the given Ppoint object with the CoPoint object.

CoPointPtr
CoPointPtr is a type definition for a reference pointer to a CoPoint object.

CoPointPtrList
CoPointPtrList is a type definition for a list of CoPoint objects.

CoPointPtrMap
CoPointPtrMap is a type definition for an associative map between unique
identifiers of CoPoint objects and their reference pointers.

Edge Classes

Edge
An Edge defines a region or segment of a Pcurve. The collection of contiguous
Edges are used for composing paths, loops, or topological boundaries.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 44 02 APR 1999

Public Attributes:

Logical consideredStraight (Real64 tolerance = 0.001)
Returns true if the Edge object is straight within the given tolerance, else false.

Name id ()
Name object that identifies the Edge object.

Real64 length3D ()
Length of Edge object in 3D model space.

std::string name ()
Name of the Edge object.

Uint32 numberOfEdgeLoopsUsingEdge ()
Number of EdgeLoop objects that use the Edge object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Edge object.

EdgePtr opposite ()
Edge object that is in the opposite direction of the Edge object.

std::string& uniqueId ()
Unique identifier of the Edge object.

Uint32 version ()
Version number of the Edge object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Edge object.

void debugPrint ()
Prints the Edge object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Edge
object, else false

const std::vector<PcurveLocation>& evlAtEqualArc (Uint32 numLoc = 2)
Evaluate an Edge for surface (u,v) and (x, y, z) at equal arclengths given a
number of points. A STL vector of PcurveLocations is returned.

const std::vector<PcurveLocation>& evlAtEqualParametric (Uint32 numLoc
= 2)
Evaluate Edge for surface (u,v) and (x, y, z) at equal parametric lengths given a
number of points. A STL vector of PcurveLocation is returned.

const CartesianLocation evlForCartesianLoc (Real64 s)
Evaluate an Edge object for (x, y, z) given (s). A CartesianLocation object is
returned.

SplineData evlForCartesianSpline ()
Evaluates the Edge for a cartesian spline. The domain (s) of the spline is
parameterized from 0 to 1. The range of the spline is (x, y, z). The spline is
returned as a SplineData object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 45 02 APR 1999

const PcurveLocation evlForClosestPcrvLoc (const Real64List&
cartesianCoords, Real64 initialGuess, Real64 tolerance, Real64& distance,
Int32& numOfIterations, Int32& convergenceInfo)
For a given cartesian point (x, y, z), finds the closest location on the Edge object
and returns it as a PcurveLocation object.

SplineData evlForParametricSpline ()
Evaluates the Edge for a parametric spline. The domain (s) of the spline is
parameterized from 0 to 1. The range of the spline is (u, v). The spline is
returned as a SplineData object.

const PcurveLocation evlForPcurveLoc (Real64 s)
Evaluate Edge for surface (u,v) and (x, y, z) given (s). A PcurveLocation object
is returned.

CoEdgePtr getCoEdge ()
Returns a reference pointer (CoEdgePtr) to the CoEdge object that uses the
Edge object. If no CoEdge object is used by the Edge object, an invalid
reference pointer is returned.

EdgeLoopPtr getEdgeLoopUsingEdge (const std::string& name, Uint32
version = 0)
Returns a reference pointer (EdgeLoopPtr) to the EdgeLoop object, given the
specified name and version, that uses the Edge object. If only the name is
given, it is assumed to be the unique identifier of the EdgeLoop object.

const EdgeLoopPtrList& getEdgeLoopsUsingEdge ()
Returns a list (EdgeLoopPtrList) of reference pointers of the EdgeLoop objects
that use the Edge object.

PpointPtr getEndPoint ()
Returns a reference pointer (PpointPtr) to the Ppoint object that ends the Edge
object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Edge object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Edge object in the given
arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PcurvePtr getPcurve ()
Returns a reference pointer (PcurvePtr) to the Pcurve object that the Edge
object uses.

SurfacePtr getSurface ()
Returns a reference pointer (SurfacePtr) to the Surface object that the Edge
object uses.

PpointPtr getStartPoint ()
Returns a reference pointer (PpointPtr) to the Ppoint object that starts the Edge
object.

const std::string& getUidOfCoEdge ()
Returns the unique identifier of the CoEdge object that uses the Edge object. An
empty string is returned if no CoEdge object uses the Edge object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 46 02 APR 1999

const std::string& getUidOfEndPoint ()
Returns the unique identifier to the Ppoint object that ends the Edge object.

const UniqueIdList& getUidsOfEdgeLoopsUsingEdge ()
Returns a list (UniqueIdList) of unique identifiers of EdgeLoop objects that use
the Edge object.

const std::string& getUidOfStartPoint ()
Returns the unique identifier to the Ppoint object that starts the Edge object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Edge
object by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Edge object.

EdgePtr
EdgePtr is a type definition for a reference pointer to an Edge object.

EdgePtrList
EdgePtrList is a type definition for a list of Edge objects.

EdgePtrMap
EdgePtrMap is a type definition for an associative map between unique
identifiers of Edge objects and their reference pointers.

EdgeLoop Classes

EdgeLoop
An EdgeLoop is a set of connected Edge objects that form a closed loop that is
not self intersecting. This loop is also oriented.

Public Attributes:

Name id ()
Name object that identifies the EdgeLoop object.

std::string name ()
Name of the EdgeLoop object.

Uint32 numberOfEdges ()
Number of Edge objects that compose the EdgeLoop object.

Uint32 numberOfFacesUsingEdgeLoop ()
Number of Face objects that use the EdgeLoop object.

Uint32 numberOfNotes ()
Number of Note objects associated with the EdgeLoop object.

EdgeLoopPtr opposite ()
EdgeLoop object that is in the opposite direction of the EdgeLoop object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 47 02 APR 1999

OrientationEnum orientation ()
Orientation (clockwise or counterclockwise) of the EdgeLoop object.

std::string& uniqueId ()
Unique identifier of the EdgeLoop object.

Uint32 version ()
Version number of the EdgeLoop object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the EdgeLoop object.

void debugPrint ()
Prints the EdgeLoop object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the
EdgeLoop object, else false

const std::vector<SplineData>& evlForCartesianLoop ()
Evaluates the EdgeLoop for a loop that is composed of splines. Each spline is
represents an Edge which is part of the EdgeLoop. The domain (s) of each spline
is parameterized from 0 to 1. The range of each spline is (x, y, z). The splines
are returned in a STL vector of SplineData objects.

const std::vector<SplineData>& evlForParametricLoop ()
Evaluates the EdgeLoop for a loop that is composed of splines. Each spline is
represents an Edge which is part of the EdgeLoop. The domain (s) of each spline
is parameterized from 0 to 1. The range of each spline is (u, v). The splines are
returned in a STL vector of SplineData objects.

EdgePtr getEdge (const std::string& name, Uint32 version = 0)
Returns a reference pointer (EdgePtr) to the Edge object, which is specified by
the given name and version, that is part of the EdgeLoop object. If only the
name is given, it is assumed the unique identifier of the Edge object.

const EdgePtrList& getEdges ()
Returns a list (EdgePtrList) of reference pointers to Edge objects that compose
the EdgeLoop object

const FacePtrList& getFacesUsingEdgeLoop ()
Returns a list (FacePtrList) of reference pointers to Face objects that use the
EdgeLoop object.

FacePtr getFaceUsingEdgeLoop (const std::string& name, Uint32 version =
0)
Returns a reference pointer (FacePtr) to the Face object, given the specified
name and version, that uses the EdgeLoop object. If only the name is given, it is
the unique identifier of the Face object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the EdgeLoop object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the EdgeLoop object in the given
arguments.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 48 02 APR 1999

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

const UniqueIdList& getUidsOfEdges ()
Returns a list (UniqueIdList) of the unique identifiers to the Edge objects that
compose the EdgeLoop object.

const UniqueIdList& getUidsOfFacesUsingEdgeLoop ()
Returns a list (UniqueIdList) of the unique identifiers to the Face objects that use
the EdgeLoop object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the EdgeLoop
object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the EdgeLoop object.

EdgeLoopPtr
EdgeLoopPtr is a type definition for a reference pointer to an EdgeLoop object.

EdgeLoopPtrList
EdgeLoopPtrList is a type definition for a list of reference pointers to EdgeLoop
objects.

EdgeLoopPtrMap
EdgeLoopPtrMap is a type definition for an associative map between unique
identifiers of EdgeLoop objects and their reference pointers.

Face Classes

Face
Face represents a region of a surface as a trimmed NURBS surface..

Public Attributes:

Real64 area ()
Surface area of the Face object.

Logical consideredFlat (Real64 tolerance = 0.001)
Returns true if the Face object is flat within the given tolerance, else false.

Name id ()
Name object that identifies the Face object.

std::string name ()
Name of the Face object.

Uint32 numberOfInnerLoops ()
Number of EdgeLoop objects that are holes in the Face object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Face object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 49 02 APR 1999

Uint32 numberOfOrientedClosedShellsUsingFace ()
Number of OrientedClosedShell objects that use the Face object.

FacePtr opposite ()
Face object that has the opposite normal of the Face object.

OrientationEnum orientation ()
Orientation (inward or outward) of the normal in relation to the Surface object that
the Face object is a part.

std::string& uniqueId ()
Unique identifier of the Face object.

Uint32 version ()
Version number of the Face object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Face object.

void debugPrint ()
Prints the Face object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Face
object, else false

Logical doesTopologicalViewExist ()
Returns true if the Face object is also a TopologicalView object, else false.

EdgeLoopPtr getInnerLoop (const std::string& name, Uint32 version = 0)
Returns an EdgeLoopPtr to the EdgeLoop object, given the specified name and
version, that represents a hole in the Face object. If only the name is given, it is
assumed the unique identifier of the EdgeLoop object.

const EdgeLoopPtrList& getInnerLoops ()
Returns a list (EdgeLoopPtrList) of all EdgeLoop objects that represent holes (i.e.
inner loops) in the Face object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Face object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Face object in the given arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

const OrientedClosedShellPtrList& getOrientedClosedShellsUsingFace ()
Returns a list (OrientedClosedShellPtrList) of reference pointers to the
OrientedClosedShell objects that use the Face object.

OrientedClosedShellPtr getOrientedClosedShellUsingFace (const
std::string& name, Uint32 version = 0)
Returns a reference pointer (OrientedClosedShellPtr) to the OrientedClosedShell
object, given the specified name and version, that uses the Face object. If only
the name is given, it is the unique identifier of the OrientedClosedShell object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 50 02 APR 1999

EdgeLoopPtr getOuterLoop ()
Returns a reference pointer (EdgeLoopPtr) to the EdgeLoop object that bounds
the Face object.

SurfacePtr getSurface ()
Returns a reference pointer (SurfacePtr) to the Surface object that the Face
object is mapped to.

TopologicalViewPtr getTopologicalView ()
Returns a reference pointer (TopologicalViewPtr) to the TopologicalView object
that is represented by the Face object. If no TopologicalView object is
represented by the Face object an invalid reference pointer is returned.

const UniqueIdList& getUidsOfInnerLoops ()
Returns a list (UniqueIdList) of unique identifiers of EdgeLoop objects that
represent the holes in the Face object.

const UniqueIdList& getUidsOfOrientedClosedShellsUsingFace ()
Returns a list (UniqueIdList) of unique identifiers of OrientedClosedShell objects
that use the Face object..

const std::string& getUidOfOuterLoop ()
Returns the unique identifier of the EdgeLoop object that bounds the Face object

const std::string& getUidOfTopologicalView ()
Returns the unique identifier of the TopologicalView object that the Face object
represents or an empty string if the Face object does not represent a
TopologicalView object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Face
object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Face object.

void removeInnerLoop (EdgeLoopPtr& edgeLoopToRemove)
Removes the given EdgeLoop object's association with the Face object's holes
(i.e. inner loops).

FacePtr
FacePtr is a type definition for a reference pointer to a Face object.

FacePtrList
FacePtrList is a type definition for a list of reference pointers to Face objects.

FacePtrMap
FacePtrMap is a type definition for an associative map between unique identifiers
of Face objects and their reference pointers.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 51 02 APR 1999

OrientedClosedShell Classes

OrientedClosedShell
The OrientedClosedShell class is a set of Face objects that form a closed shell
that is oriented.

Public Attributes:

Real64* centroid ()
Centroid of the OrientedClosedShell object

Name id ()
Name object that identifies the OrientedClosedShell object.

std::string name ()
Name of the OrientedClosedShell object.

Uint32 numberOfFaces ()
Number of Face objects that compose the closed boundary of the
OrientedClosedShell object.

Uint32 numberOfNotes ()
Number of Note objects associated with the OrientedClosedShell object.

Uint32 numberOfSolidsUsingOrientedClosedShell ()
Number of Solid objects that use the OrientedClosedShell object.

OrientedClosedShellPtr opposite ()
OrientedClosedShell object whose normal is opposite to the OrientedClosedShell
object.

OrientationEnum orientation ()
Orientation (clockwise or counterclockwise) of OrientedClosedShell object.

Real64 surfaceArea ()
Surface Area of the OrientedClosedShell object

std::string& uniqueId ()
Unique identifier of the OrientedClosedShell object.

Uint32 version ()
Version number of the OrientedClosedShell object.

Real64 volume ()
Volume of the OrientedClosedShell object

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the OrientedClosedShell object.

void debugPrint ()
Prints the OrientedClosedShell object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the
OrientedClosedShell object, else false

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 52 02 APR 1999

FacePtr getFace (const std::string& name, Uint32 version = 0)
Returns a FacePtr to the Face object, which is specified by the given name and
version, that is part of OrientedClosedShell object. If only the name is given, it is
the unique id of the Face object.

const FacePtrList& getFaces ()
Returns a list of reference pointers (FacePtrList) to Face objects that compose
the OrientedClosedShell object

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the OrientedClosedShell object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the OrientedClosedShell object in the
given arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

const SolidPtrList& getSolidsUsingOrientedClosedShell ()
Returns a list of reference pointers (SolidPtrList) to Solid objects that use the
OrientedClosedShell object

SolidPtr getSolidUsingOrientedClosedShell (const std::string& name,
Uint32 version = 0)
Returns a SolidPtr to the Solid object, given the specified name and version, that
the OrientedClosedShell object is a part of. If only the name is given, it is the
unique id of the Solid object.

const UniqueIdList& getUidsOfFaces ()
Returns a list (UniqueIdList) of the unique identifiers to the Face objects that
compose the OrientedClosedShell object.

const UniqueIdList& getUidsOfSolidsUsingOrientedClosedShell ()
Returns a list (UniqueIdList) of the unique identifiers to the Solid objects that use
the OrientedClosedShell object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the
OrientedClosedShell object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the OrientedClosedShell object.

OrientedClosedShellPtr
OrientedClosedShellPtr is a type definition for a reference pointer to an
OrientedClosedShell object.

OrientedClosedShellPtrMap
OrientedClosedShellPtrMap is a type definition for an associative map between
unique identifiers of OrientedClosedShell objects and their reference pointers.

OrientedClosedShellPtrList
OrientedClosedShellPtrList is a type definition for a list of reference pointers to
OrientedClosedShell objects.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 53 02 APR 1999

Pcurve Classes

Pcurve
A Pcurve object represents a parametric curve. A parametric curve is defined by
means of a 2D curve in the parameter space of a surface. Its spline definition
only contains geometry variables.

Derived from Spline

Public Attributes:

Logical consideredStraight (const Real64 tolerance = 0.001)
Returns true if the Pcurve object is straight within the given tolerance, else false.

Name id ()
Name object that identifies the Pcurve object.

Real64 length3D ()
Length of Pcurve object in 3D model space.

std::string name ()
Name of the Pcurve object.

Uint32 numberOfMappedPpoints ()
Number of Ppoint objects that are mapped to (lie on) the Pcurve object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Pcurve object.

std::string& uniqueId ()
Unique identifier of the Pcurve object.

Uint32 version ()
Version number of the Pcurve object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Pcurve object.

void debugPrint ()
Prints the Pcurve object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Pcurve
object, else false

const std::vector<PcurveLocation>& evlAtEqualArc (Uint32 numLoc = 2)
Evaluate a Pcurve for surface (u,v) and (x, y, z) at equal arclengths given a
number of points. A STL vector of PcurveLocation is returned.

const std::vector<PcurveLocation>& evlAtEqualArc (Real64 startValue,
Real64 endValue, Uint32 numLoc = 2)
Evaluates a segment of the Pcurve for a given number of PcurveLocations which
are at equal arclength spacing. A STL vector of PcurveLocations is returned.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 54 02 APR 1999

const std::vector<PcurveLocation>& evlAtEqualParametric (Uint32 numLoc
= 2)
Evaluate Pcurve for a given number of PcurveLocations which are at equal
parametric spacing. A STL vector of PcurveLocations is returned.

const std::vector<PcurveLocation>& evlAtEqualParametric (Real64
startValue, Real64 endValue, Uint32 numLoc = 2)
Evaluates a segment of the Pcurve for a given number of PcurveLocations which
are at equal parametric spacing. A STL vector of PcurveLocations is returned.

const CartesianLocation evlForCartesianLoc (Real64 s)
Evaluate Pcurve for (x, y, z) given (s). A CartesianLocation object is returned.

const PcurveLocation evlForClosestPcrvLoc (const Real64List&
cartesianCoords, Real64 initialGuess, const Real64 tolerance, Real64&
distance, Int32& numOfIterations, Int32& convergenceInfo)
For a given cartesian point (x, y, z), finds the closest location on the Pcurve
object and return it as a PcurveLocation object.

const PcurveLocation evlForPcurveLoc (Real64 s)
Evaluate Pcurve for surface (u,v) and (x, y, z) given (s). A PcurveLocation
object is returned.

SplineData evlForSegmentCartesianSpline (Real64 startValue, Real64
endValue, Logical reverseParWanted = false)
Evaluates the segment of a Pcurve given the start and end points of the segment
for a cartesian spline. The domain (s) of the spline is parameterized from 0 to 1.
The range of the spline is (x, y, z). The spline is returned as a SplineData object.

Real64 evlForSegmentLength3D (Real64 startValue, Real64 endValue)
Evaluates the 3D model space length of a segment of a Pcurve given the start
and end points of the segment.

SplineData evlForSegmentParametricSpline (Real64 startValue, Real64
endValue, Logical reverseParWanted = false)
Evaluates the segment of a Pcurve given the start and end points of the segment
for a parametric spline. The domain (s) of the spline is parameterized from 0 to
1. The range of the spline is (u, v). The spline is returned as a SplineData
object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Pcurve object.

PpointPtr getMappedPpoint (const std::string& name, const Uint32 version =
0)
Returns a reference pointer (PpointPtr) to the Ppoint object that is mapped to the
Pcurve object which was specified by name and version. If only the name is
given, it is assumed to be the unique identifier of the Ppoint object.

const PpointPtrList& getMappedPpoints ()
Returns a list (PpointPtrList) of Ppoint objects that are mapped to the Pcurve
object

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Pcurve object in the given
arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 55 02 APR 1999

SurfacePtr getSurface ()
Returns a reference pointer (SurfacePtr) to the Surface object to which the
Pcurve object is mapped.

const UniqueIdList& getUidsOfMappedPpoints ()
Returns a list (UniqueIdList) of unique identifiers of Ppoint objects that are
mapped to the Pcurve object.

const std::string& getUidOfSurface ()
Returns a unique identifier to the Surface object that the Pcurve object maps to.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Pcurve
object by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Pcurve object.

PcurvePtr
PcurvePtr is a type definition for a reference pointer to a Pcurve object.

PcurvePtrList
PcurvePtrList is a type definition for a list of reference pointers to Pcurve objects.

PcurvePtrMap
PcurvePtrMap is a type definition for an associative map between unique
identifiers of Pcurve objects and their reference pointers

Ppoint Classes

Ppoint
A Ppoint is a parametric point lying on a Pcurve.

Public Attributes:

Name id ()
Name object that identifies the Ppoint object.

Real64 location ()
Parametric value which specifies the location of the Ppoint object on the Pcurve
object.

std::string name ()
Name of the Ppoint object.

Uint32 numberOfEdgesIEnd ()
Number of Edge objects the Ppoint object ends.

Uint32 numberOfEdgesIStart ()
Number of Edge objects the Ppoint object starts.

Uint32 numberOfNotes ()
Number of Note objects associated with the Ppoint object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 56 02 APR 1999

std::string& uniqueId ()
Unique identifier of the Ppoint object.

Uint32 version ()
Version number of the Ppoint object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Ppoint object.

void debugPrint ()
Prints the Ppoint object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Ppoint
object, else false

const CartesianLocation evlForCartesianLoc ()
Evaluate Ppoint for (x, y, z) at it's location. A CartesianLocation object is
returned.

const PcurveLocation evlForPcurveLoc ()
Evaluate Ppoint for (s ,u v, x, y, z) at it's location. A PcurveLocation object is
returned.

CoPointPtr getCoPoint ()
Returns a reference pointer (CoPointPtr) to the CoPoint object that uses the
Ppoint object. If no CoPoint object is used by the Ppoint object, an invalid
reference pointer is returned.

EdgePtr getEdgeIEnd (const std::string& name, Uint32 version = 0)
Returns a reference pointer (EdgePtr) to the Edge object, given the specified
name and version, that the Ppoint object ends. If only the name is given, it is the
unique identifier of the Edge object.

const EdgePtrList& getEdgesIEnd ()
Returns a list (EdgePtrList) of reference pointers to the Edge objects that the
Ppoint object ends.

EdgePtr getEdgeIStart (const std::string& name, Uint32 version = 0)
Returns a reference pointer (EdgePtr) to the Edge object, given the specified
name and version, that the Ppoint object starts. If only the name is given, it is the
unique identifier of the Edge object.

const EdgePtrList& getEdgesIStart ()
Returns a list (EdgePtrList) of reference pointers to the Edge objects that the
Ppoint object starts.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Ppoint object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Ppoint object in the given
arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 57 02 APR 1999

PcurvePtr getPcurve ()
Returns a reference pointer to the Pcurve object that the Pppoint object maps to.

const std::string& getUidOfCoPoint ()
Returns the unique identifier of the CoPoint object that uses the Ppoint object.
An empty string is returned if no CoPoint object uses the Ppoint object.

const UniqueIdList& getUidsOfEdgesIEnd ()
Returns a list (UniqueIdList) of the unique identifiers to the Edge objects that the
Ppoint object ends.

const UniqueIdList& getUidsOfEdgesIStart ()
Returns a list (UniqueIdList) of the unique identifiers to the Edge objects that the
Ppoint object starts.

const std::string& getUidOfPcurve ()
Returns the unique identifier to the Pcurve object that the Pppoint object maps to.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Ppoint
object by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Ppoint object.

PpointPtr
PpointPtr is a type definition for a reference pointer to a Ppoint object.

PpointPtrList
PpointPtrList is a type definition for a list of Ppoint objects.

PpointPtrMap
PpointPtrMap is a type definition for an associative map between unique
identifiers of Ppoint objects and their reference pointers.

Solid Classes

Solid
The Solid class is a boundary represented solid.

Public Attributes:

Real64* centroid ()
Geometric centroid of the Solid object

Name id ()
Name object that identifies the Solid object.

std::string name ()
Name of the Solid object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Solid object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 58 02 APR 1999

Uint32 numberOfVoidShells ()
Number of OrientedClosedShell objects that are voids in the Solid object.

Real64 surfaceArea ()
Outer surface area of the Solid object

std::string& uniqueId ()
Unique identifier of the Solid object.

Uint32 version ()
Version number of the Solid object.

Real64 volume ()
Volume of the Solid object

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Solid object.

void debugPrint ()
Prints the Solid object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Solid
object, else false

Logical doesTopologicalViewExist ()
Returns true if the Solid object is also a TopologicalView object, else false.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Solid object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Solid object in the given arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

OrientedClosedShellPtr getOuterShell ()
Returns a reference pointer (OrientedClosedShellPtr) of the OrientedClosedShell
object that bounds (i.e. outer shell) the Solid object.

TopologicalViewPtr getTopologicalView ()
Returns a reference pointer (TopologicalViewPtr) to the TopologicalView object
that is represented by the Solid object. If no TopologicalView object is
represented by the Solid object an invalid reference pointer is returned.

OrientedClosedShellPtr getVoidShell (const std::string& name, Uint32 version
= 0)
Returns a reference pointer (OrientedClosedShellPtr) to the OrientedClosedShell
object, given the specified name and version that represents a void in the Solid
object. If only the name is given, it is the unique identifier of the
OrientedClosedShell object.

const OrientedClosedShellPtrList& getVoidShells ()
Returns list (OrientedClosedShellPtrList) of reference pointers to
OrientedClosedShell objects that represent voids in the Solid object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 59 02 APR 1999

const std::string& getUidOfOuterShell ()
Returns the unique identifier of the OrientedClosedShell object that bounds (i.e.
outer shell) the Solid object.

const std::string& getUidOfTopologicalView ()
Returns the unique identifier of the TopologicalView object that the Solid object
represents or an empty string if the Solid object does not represent a
TopologicalView object.

const UniqueIdList& getUidsOfVoidShells ()
Returns list of unique identifiers of the OrientedClosedShell objects that
represent voids in the Solid object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Solid
object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Solid object.

void removeVoidShell (const OrientedClosedShellPtr& shellToRemove)
Removes the association between the Solid object and an OrientedClosedShell
object that represents the void in the Solid object.

SolidPtr
SolidPtr is a type definition for a reference pointer to a Solid object.

SolidPtrList
SolidPtrList is a type definition for a list of reference pointers of Solid objects.

SolidPtrMap
SolidPtrMap is a type definition for an associative map between unique identifiers
of Solid objects and their reference pointers.

Structure Classes

Structure
The Structure Class defines the highest level of physical representation for a
design or part.

Public Attributes:

Name id ()
Name object that identifies the Structure object.

std::string name ()
Name of the Structure object.

Uint32 numberOfCoEdges ()
Number of CoEdge objects that are a part of the Structure object.

Uint32 numberOfCommonViews ()
Number of CommonView objects that are a part of the Structure object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 60 02 APR 1999

Uint32 numberOfCoPoints ()
Number of CoPoint objects that are a part of the Structure object.

Uint32 numberOfEdges ()
Number of Edge objects that are a part of the Structure object.

Uint32 numberOfEdgeLoops ()
Number of EdgeLoop objects that are a part of the Structure object.

Uint32 numberOfFaces ()
Number of Face objects that are a part of the Structure object.

Uint32 numberOfMaterials ()
Number of Material objects associated with the Structure object.

Uint32 numberOfMaterialGroups ()
Number of MaterialGroup objects associated with the Structure object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Structure object.

Uint32 numberOfOrientedClosedShells ()
Number of OrientedClosedShell objects that are a part of the Structure object.

Uint32 numberOfPcurves ()
Number of Pcurve objects that are a part of the Structure object.

Uint32 numberOfPpoints ()
Number of Ppoint objects that are a part of the Structure object.

Uint32 numberOfProperties ()
Number of Property objects associated with the Structure object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the Structure object.

Uint32 numberOfSolids ()
Number of Solid objects that are a part of the Structure object.

Uint32 numberOfSurfaces ()
Number of Surface objects that are a part of the Structure object.

Uint32 numberOfTopologicalViews ()
Number of TopologicalView objects that are a part of the Structure object.

std::string uniqueId ()
Unique identifier of the Structure object.

Uint32 version ()
Version number of the Structure object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Structure object.

CoEdgePtr createCoEdge (const std::string& name, Uint32 version, const
EdgePtrList& associatedEdges)
Creates a CoEdge object with the given name and version number and returns a
reference pointer (CoEdgePtr) to the object. The CoEdge object is created from
the list of given Edge objects.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 61 02 APR 1999

CommonViewPtr createCommonView (const std::string& name, Uint32
version, const TopologicalViewPtrList& theTopologicalViews, const
CommonViewPtrList& theCommonViews)
Creates a CommonView object with the given name, version number,
TopologicalView objects, and CommonView objects. A reference pointer
(CommonViewPtr) to this object is returned.

CoPointPtr createCoPoint (const std::string& name, Uint32 version, const
PpointPtrList& memberPpoints, const CartesianLocation& loc)
Creates a CoPoint object with the given name, version number, and a list of
Ppoint objects. The owner of the CoPoint object is set to the given Structure
object. A reference pointer (CoPointPtr) to this object is returned.

EdgePtr createEdge (const std::string& name, Uint32 version, const
PpointPtr& edgeStartPoint, const PpointPtr& edgeEndPoint)
Creates a Edge object with the given name and version number and returns a
reference pointer (EdgePtr) to the object. The Edge object is created from the
given Ppoint objects.

EdgeLoopPtr createEdgeLoop (const std::string& name, Uint32 version,
const EdgePtrList& theEdges)
Creates an EdgeLoop object with the given name, version number, and a list of
Edge objects. The owner of the EdgeLoop object is set to the given Structure
object. A reference pointer (EdgeLoopPtr) to this object is returned.

FacePtr createFace (const std::string& name, Uint32 version, const
EdgeLoopPtr& theOuterLoop, const EdgeLoopPtrList& theInnerLoops)
Creates an Face object with the given name, version number, the bounding loop
and a list of EdgeLoop objects that represent holes in the face. The owner of the
Face object is set to the given Structure object. A reference pointer (FacePtr) to
this object is returned.

MaterialPtr createMaterial (const std::string& name, Uint32 version)
Creates a Material object with the given name and version. This object is
associated with the Structure object.

MaterialGroupPtr createMaterialGroup (const std::string& name, Uint32
version, const MaterialPtrList& materialData, const MaterialGroupPtrList&
materialGroupData)
Creates a MaterialGroup object with the given name, version, and a list of
reference pointers to MaterialGroup and Material objects. This MaterialGroup
object is associated with the Structure object.

OrientedClosedShellPtr createOrientedClosedShell (const std::string&
name, Uint32 version, const FacePtrList& theFaces)
Creates an OrientedClosedShell object with the given name, version number,
and a list of Face objects. The owner of the OrientedClosedShell object is set to
the given Structure object. A reference pointer (OrientedClosedShellPtr) to this
object is returned.

PcurvePtr createPcurve (const std::string& name, Uint32 version, const
SurfacePtr& mapsToSurface, const SplineDomainVariableList&
domainVars, const SplineRangeVariableList& rangeVars)
Creates a Pcurve object with the given name and version number and returns a
reference pointer (PcurvePtr) to the object. The Pcurve object is created as a
non-rational spline that represents a parametric curve that maps to the given
surface.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 62 02 APR 1999

PcurvePtr createPcurve (const std::string& name, Uint32 version, const
SurfacePtr& mapsToSurface, const SplineDomainVariableList domainVars,
const SplineRangeVariableList& rangeVars, const Real64List& weights)
Creates a Pcurve object with the given name and version number and returns a
reference pointer (PcurvePtr) to the object. The Pcurve object is created as a
rational spline that represents a parametric curve that maps to the given surface.

PcurvePtr createPcurve (const std::string& name, Uint32 version, const
SurfacePtr& mapsToSurface, const Spline& spline)
Creates a Pcurve object with the given name and version number and returns a
reference pointer (PcurvePtr) to the object. The Pcurve object is created from
the given Splin object that represents a parametric curve that maps to the given
surface.

const std::vector<std::pair<PcurvePtr, PcurvePtr> >&
createPcurvesByIntersection (const std::string& pcrvARootName, const
SurfacePtr& surfaceA, const std::string& pcrvBRootName, const
SurfacePtr& surfaceB, Real64 toleranceIn = 0.0005)
Creates a STL vector of pairs of reference pointer to Pcurve objects created by
intersecting two surfaces, A and B respectively. The first element of the pair is a
Pcurve object that lies on Surface A, and the second element is a Pcurve object
that lies on Surface B.

PpointPtr createPpoint (const std::string& name, Uint32 version, const
PcurvePtr& mapsToPcurve, Real64 loc)
Creates a Ppoint object with the given name and version number and returns a
reference pointer (PpointPtr) to the object. The Ppoint object is created from the
given value that is on the given Pcurve object.

const std::vector<std::pair<PpointPtr, PpointPtr> >&
createPpointsByIntersection (const std::string& ppntARootName, const
PcurvePtr& pcurveA, const std::string& ppntBRootName, const
PcurvePtr& pcurveB, Real64 toleranceIn = 0.0005)
Creates a STL vector of pairs of reference pointers to Ppoint objects created by
intersecting two pcurves, A and B respectively. The first element of the pair is a
reference pointer to a Ppoint object that lies on Pcurve A, and the second
element is a reference pointer to a Ppoint object that lies on Pcurve B.

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the Structure object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the Structure object.

SolidPtr createSolid (const std::string& name, Uint32 version, const
OrientedClosedShellPtr& theOuterShell, const
OrientedClosedShellPtrList& theVoidShells)
Creates a Solid object from the given name, version number, bounding shell,
and void shells. The owner of the Solid object is set to the given Structure
object. A reference pointer (SolidPtr) to this object is returned.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 63 02 APR 1999

SurfacePtr createSurface (const std::string& name, Uint32 version, const
SplineDomainVariableList& domainVars, const SplineRangeVariableList&
rangeVars)
Creates a Surface object with the given name and version number and returns a
reference pointer (SurfacePtr) to the object. The Surface object is created as a
non-rational spline that represents a surface.

SurfacePtr createSurface (const std::string& name, Uint32 version, const
SplineDomainVariableList& domainVars, const SplineRangeVariableList&
rangeVars, const Real64List& weights)
Creates a Surface object with the given name and version number and returns a
reference pointer (SurfacePtr) to the object. The Surface object is created as a
rational spline that represents a surface.

SurfacePtr createSurface (const std::string& name, Uint32 version, const
Spline& spline)
Creates a Surface object with the given name and version number and returns a
reference pointer (SurfacePtr) to the object. The Surface object is created with
the given Spline object that represents a surface.

SurfacePtr createSurface (const std::string& name, Uint32 version,
std::vector<Curve>& crvList, const Real64 toleranceIn = 0.0001)
Creates a Surface object with the given name and version number and returns a
reference pointer (SurfacePtr) to the object. The Surface object is created from a
STL vector of Curve objects.

TopologicalViewPtr createTopologicalView (const std::string& name, Uint32
version, const SurfacePtr& surfView)
Creates a TopologicalView object with the given name, version number, and
Surface object. A reference pointer (TopologicalViewPtr) to this object is
returned.

TopologicalViewPtr createTopologicalView (const std::string& name, Uint32
version, const FacePtr& faceView)
Creates a TopologicalView object with the given name, version number, and
Face object. A reference pointer (TopologicalViewPtr) to this object is returned.

TopologicalViewPtr createTopologicalView (const std::string& name, Uint32
version, const SolidPtr& solidView)
Creates a TopologicalView object with the given name, version number, and
Solid object. A reference pointer (TopologicalViewPtr) to this object is returned.

void debugPrint ()
Prints the Structure object's member values to the error file cerr.

void destroyCommonView (const std::string& name, Uint32 version = 0)
Destroys the CommonView object with the given name and version number and
all other objects dependent on it that is contained by this Structure object. If only
the name is given, it is the unique identifier of the CommonView object.

void destroyCoEdge (const std::string& name, const Uint32 version = 0)
Destroys the CoEdge object with the given name and version number and all
other objects dependent on it that is contained by this Structure object. If only
the name is given, it is assumed to be the unique identifier of the CoEdge object.

void destroyCoPoint (const std::string& name, Uint32 version = 0)
Destroys the CoPoint object with the given name and version number and all
other objects dependent on it that is contained by this Structure object. If only
the name is given, it is assumed to be the unique identifier of the CoPoint object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 64 02 APR 1999

void destroyEdge (const std::string& name, Uint32 version = 0)
Destroys the Edge object with the given name and version number and all other
objects dependent on it that is contained by this Structure object. If only the
name is given, it is assumed to be the unique identifier of the Edge object.

void destroyEdgeLoop (const std::string& name, Uint32 version = 0)
Destroys the EdgeLoop object with the given name and version number and all
other objects dependent on it that is contained by this Structure object. If only
the name is given, it is assumed to be the unique identifier of the EdgeLoop
object.

void destroyFace (const std::string& name, Uint32 version = 0)
Destroys the Face object with the given name and version number and all other
objects dependent on it that is contained by this Structure object. If only the
name is given, it is the unique identifier of the Face object.

void destroyMaterial (const std::string& name, Uint32 version = 0)
Destroys the Material object with the given name and version that is contained by
this Structure object. If only the name is given, it is the unique identifier of the
Material object.

void destroyMaterialGroup (const std::string& name, Uint32 version = 0)
Destroys the MaterialGroup object with the given name and version that is
contained by this Structure object. If only the name is given, it is assumed to be
the unique identifier of the MaterialGroup object.

void destroyOrientedClosedShell (const std::string& name, Uint32 version =
0)
Destroys the OrientedClosedShell object with the given name and version
number and all other objects dependent on it that is contained by this Structure
object. If only the name is given, it is assumed to be the unique identifier of the
OrientedClosedShell object.

void destroyPcurve (const std::string& name, Uint32 version = 0)
Destroys the Pcurve object with the given name and version number and all
other objects dependent on it that is contained by this Structure object. If only
the name is given, it is assumed to be the unique identifier of the Pcurve object.

void destroyPpoint (const std::string& name, Uint32 version = 0)
Destroys the Ppoint object with the given name and version number and all other
objects dependent on it that is contained by this Structure object. If only the
name is given, it is assumed to be the unique identifier of the Ppoint object.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this Structure object. If only the name is given, it is the unique identifier of the
Property object.

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this Structure object. If only the name is given, it is the unique
identifier of the PropertyGroup object.

void destroySolid (const std::string& name, Uint32 version = 0)
Destroys the Solid object with the given name and version number and all other
objects dependent on it that is contained by this Structure object. If only the
name is given, it is assumed to be the unique identifier of the Solid object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 65 02 APR 1999

void destroySurface (const std::string& name, Uint32 version = 0)
Destroys the Surface object with the given name and version number and all
other objects dependent on it that is contained by this Structure object. If only
the name is given, it is the unique identifier of the Surface object.

void destroyTopologicalView (const std::string& name, Uint32 version = 0)
Destroys the TopologicalView object with the given name and version number
and all other objects dependent on it that is contained by this Structure object. If
only the name is given, it is assumed to be the unique identifier of the
TopologicalView object.

Logical doesCoEdgeExist (const std::string& name, Uint32 version = 0)
Returns true if the CoEdge object with the given name and version number is a
associated with the Structure object, else false. If only the name is given, it is
assumed to be the unique identifier of the CoEdge object.

Logical doesCommonViewExist (const std::string& name, Uint32 version =
0)
Returns true if the CommonView object with the given name and version number
is a associated with the Structure object, else false. If only the name is given, it
is assumed to be the unique identifier of the CommonView object.

Logical doesCoPointExist (const std::string& name, Uint32 version = 0)
Returns true if the CoPoint object with the given name and version number is a
associated with the Structure object, else false. If only the name is given, it is
assumed to be the unique identifier of the CoPoint object.

Logical doesEdgeExist (const std::string& name, Uint32 version = 0)
Returns true if the Edge object with the given name and version number is a
associated with the Structure object, else false. If only the name is given, it is the
unique identifier of the Edge object.

Logical doesEdgeLoopExist (const std::string& name, Uint32 version = 0)
Returns true if the EdgeLoop object with the given name and version number is a
associated with the Structure object, else false. If only the name is given, it is
assumed to be the unique identifier of the EdgeLoop object.

Logical doesFaceExist (const std::string& name, Uint32 version = 0)
Returns true if the Face object with the given name and version number is an
associated with the Structure object, else false. If only the name is given, it is the
unique identifier of the Face object.

Logical doesMaterialExist (const std::string& name, Uint32 version = 0)
Returns true if the Material object with the given name and version number is a
associated with the Structure object, else false. If only the name is given, it is the
unique identifier of the Material object.

Logical doesMaterialGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the MaterialGroup object with the given name and version number
is a associated with the Structure object, else false. If only the name is given, it
is the unique identifier of the MaterialGroup object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Structure
object, else false

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 66 02 APR 1999

Logical doesOrientedClosedShellExist (const std::string& name, Uint32
version = 0)
Returns true if the OrientedClosedShell object with the given name and version
number is a associated with the Structure object, else false. If only the name is
given, it is the unique identifier of the OrientedClosedShell object.

Logical doesPcurveExist (const std::string& name, Uint32 version = 0)
Returns true if the Pcurve object with the given name and version number is a
associated with the Structure object, else false. If only the name is given, it is the
unique identifier of the Pcurve object.

Logical doesPpointExist (const std::string& name, Uint32 version = 0)
Returns true if the Ppoint object with the given name and version number is a
associated with the Structure object, else false. If only the name is given, it is the
unique identifier of the Ppoint object.

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is an
associated with the Structure object, else false. If only the name is given, it is the
unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the Structure object, else false. If only the name is
given, it is the unique identifier of the PropertyGroup object.

Logical doesSolidExist (const std::string& name, Uint32 version = 0)
Returns true if the Solid object with the given name and version number is a
associated with the Structure object, else false. If only the name is given, it is
assumed to be the unique identifier of the Solid object.

Logical doesSurfaceExist (const std::string& name, Uint32 version = 0)
Returns true if the Surface object with the given name and version number is a
associated with the Structure object, else false. If only the name is given, it is the
unique identifier of the Surface object.

Logical doesTopologicalViewExist (const std::string& name, Uint32 version
= 0)
Returns true if the TopologicalView object with the given name and version
number is a associated with the Structure object, else false. If only the name is
given, it is assumed to be the unique identifier of the TopologicalView object.

CoEdgePtr getCoEdge (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the CoEdge object with the given name and
version number that is contained by this Structure object. If only the name is
given, it is assumed to be the unique identifier of the CoEdge object.

CommonViewPtr getCommonView (const std::string& name, Uint32 version =
0)
Returns a reference pointer to the CommonView object with the given name and
version number that is contained by this Structure object. If only the name is
given, it is the unique identifier of the CommonView object.

CoPointPtr getCoPoint (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the CoPoint object with the given name and
version number that is contained by this Structure object. If only the name is
given, it is assumed to be the unique identifier of the CoPoint object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 67 02 APR 1999

EdgePtr getEdge (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Edge object with the given name and version
number that is contained by this Structure object. If only the name is given, it is
assumed to be the unique identifier of the Edge object.

EdgeLoopPtr getEdgeLoop (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the EdgeLoop object with the given name and
version number that is contained by this Structure object. If only the name is
given, it is assumed to be the unique identifier of the EdgeLoop object.

FacePtr getFace (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Face object with the given name and version
number that is contained by this Structure object. If only the name is given, it is
the unique identifier of the Face object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Sturcture object.

MaterialPtr getMaterial (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Material object with the given name and
version number that is contained by this Structure object. If only the name is
given, it is the unique identifier of the Material object.

MaterialGroupPtr getMaterialGroup (const std::string& name, Uint32 version
= 0)
Returns a reference pointer to the MaterialGroup object with the given name and
version number that is contained by this Structure object. If only the name is
given, it is the unique identifier of the MaterialGroup object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Structure object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfCoEdges ()
Returns the NameVersionParis of CoEdge objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfCommonViews ()
Returns the NameVersionParis of CommonView objects that are associated with
the Structure object.

const NameVersionPairList& getNameVersionPairsOfEdgeLoops ()
Returns the NameVersionParis of EdgeLoop objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfCoPoints ()
Returns the NameVersionParis of CoPoint objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfEdges ()
Returns the NameVersionParis of Edge objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfFaces ()
Returns the NameVersionParis of Face objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfMaterials ()
Returns the NameVersionParis of Material objects that are associated with the
Structure object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 68 02 APR 1999

const NameVersionPairList& getNameVersionPairsOfMaterialGroups ()
Returns the NameVersionPairs of MaterialGroup objects that are associated with
the Structure object.

const NameVersionPairList&
getNameVersionPairsOfOrientedClosedShells ()
Returns the NameVersionParis of OrientedClosedShell objects that are
associated with the Structure object.

const NameVersionPairList& getNameVersionPairsOfPcurves ()
Returns the NameVersionParis of Pcurve objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfPpoints ()
Returns the NameVersionParis of Ppoint objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionParis of Property objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the Structure object.

const NameVersionPairList& getNameVersionPairsOfSolids ()
Returns the NameVersionParis of Solid objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfSurfaces ()
Returns the NameVersionParis of Surface objects that are associated with the
Structure object.

const NameVersionPairList& getNameVersionPairsOfTopologicalViews ()
Returns the NameVersionParis of TopologicalView objects that are associated
with the Structure object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

OrientedClosedShellPtr getOrientedClosedShell (const std::string& name,
Uint32 version = 0)
Returns a reference pointer to the OrientedClosedShell object with the given
name and version number that is contained by this Structure object. If only the
name is given, it is assumed to be the unique identifier of the
OrientedClosedShell object.

PcurvePtr getPcurve (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Pcurve object with the given name and version
number that is contained by this Structure object. If only the name is given, it is
the unique identifier of the Pcurve object.

PpointPtr getPpoint (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Ppoint object with the given name and version
number that is contained by this Structure object. If only the name is given, it is
assumed to be the unique identifier of the Ppoint object.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this Structure object. If only the name is
given, it is the unique identifier of the Property object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 69 02 APR 1999

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this Structure object. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

SolidPtr getSolid (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Solid object with the given name and version
number that is contained by this Structure object. If only the name is given, it is
assumed to be the unique identifier of the Solid object.

SurfacePtr getSurface (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Surface object with the given name and
version number that is contained by this Structure object. If only the name is
given, it is assumed to be the unique identifier of the Surface object.

TopologicalViewPtr getTopologicalView (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the TopologicalView object with the given name
and version number that is contained by this Structure object. If only the name is
given, it is assumed to be the unique identifier of the TopologicalView object.

const UniqueIdList& getUidsOfCoEdges ()
Returns the unique identifies of CoEdge objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfCoPoints ()
Returns the unique identifies of CoPoint objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfCommonViews ()
Returns the unique identifies of CommonView objects that are associated with
the Structure object.

const UniqueIdList& getUidsOfEdges ()
Returns the unique identifies of Edge objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfEdgeLoops ()
Returns the unique identifies of EdgeLoop objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfFaces ()
Returns the unique identifies of Face objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfMaterials ()
Returns the unique identifies of Material objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfMaterialGroups ()
Returns the unique identifies of MaterialGroup objects that are associated with
the Structure object.

const UniqueIdList& getUidsOfOrientedClosedShells ()
Returns the unique identifies of OrientedClosedShell objects that are associated
with the Structure object.

const UniqueIdList& getUidsOfPcurves ()
Returns the unique identifies of Pcurve objects that are associated with the
Structure object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 70 02 APR 1999

const UniqueIdList& getUidsOfPpoints ()
Returns the unique identifies of Ppoint objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the Structure object.

const UniqueIdList& getUidsOfSolids ()
Returns the unique identifies of Solid objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfSurfaces ()
Returns the unique identifies of Surface objects that are associated with the
Structure object.

const UniqueIdList& getUidsOfTopologicalViews ()
Returns the unique identifies of TopologicalView objects that are associated with
the Structure object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Structure
object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Structure object.

StructurePtr
StructurePtr is a type definition for a reference pointer to a Structure object.

StructurePtrList
StructurePtrList is a type definition for a list of reference pointers to Structure
objects.

StructurePtrMap
StructurePtrMap is a type definition for an associative map between unique
identifiers of Structure objects and their reference pointers.

Surface Classes

Surface
The Surface class represents two dimensional geometry in Cartesian space.

Derived from Spline

Public Attributes:

Real64 area (Real64 tolerance = 0.00005)
Computes the area of the surface given the relative tolerance.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 71 02 APR 1999

Real64List cartesianBounds ()
The cartesian bounding box of the surface. The bounding box is defined by its
minimum point (xmin, ymin, zmin) and its maximum point (xmax, ymax, zmax).
These values are store in a STL vector of real numbers.

Logical consideredFlat (const Real64 tolerance = 0.001)
Returns true if the Surface object is flat within the specified tolerance, else false.

Name id ()
Name object that identifies the Surface object.

std::string name ()
Name of the Surface object.

Uint32 numberOfMappedPcurves ()
Number of Pcurve objects that are mapped to (lie on) the Surface object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Surface object.

std::string& uniqueId ()
Unique identifier of the Surface object.

Uint32 version ()
Version number of the Surface object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Surface object.

void debugPrint ()
Prints the Surface object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Surface
object, else false

Logical doesTopologicalViewExist ()
Returns true if the Surface object is also a TopologicalView object, else false.

const std::vector<SurfaceLocation>& evlAtEqualArc (Uint32 numULoc = 2,
Uint32 numVLoc = 2)
Evaluates Surface object for a given number of SurfaceLocations which are at
equal arclength spacing. A STL vector of SurfaceLocations is returned.

const std::vector<SurfaceLocation>& evlAtEqualParametric (Uint32
numULoc = 2, Uint32 numVLoc = 2)
Evaluates Surface for a given number of SurfaceLocations which are at equal
parametric spacing. A STL vector of SurfaceLocations is returned.

const CartesianLocation evlForCartesianLoc (const Real64 u, const Real64 v)
Evaluate Surface for (x, y, z) given (u, v). A SurfaceLocation object is returned.

const SurfaceLocation evlForClosestSurfLoc (const Real64List&
cartesianCoords, Real64List& initialGuess, Real64 tolerance, Real64&
distance, Int32& numOfIterations, Int32& convergenceInfo)
For a given cartesian location (x, y, z), finds the closest location on the surface
and return it as a SurfaceLocation object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 72 02 APR 1999

const std::vector<std::pair<SurfaceLocation,SurfaceLocation> >&
evlForEqualCorners (SurfacePtr surface, Real64 tolerance = 0.0001)
evlForEqualCorners tests the natural boundary corners of two surfaces for
coincident Cartesian locations in the corners of the surface domain. The test
occurs for each surface at (u,v) where u=(min,max) and v=(min,max), and
considers equivalence to occur if the distance between the corners is within a
specified tolerance. The return vector contains the pair of locations as
SufaceLocation on Surface 1 followed by the SurfaceLocation on Surface2.

const SurfaceLocation evlForSurfaceLoc (const Real64 u, const Real64 v)
Evaluate surface for the cartesian point (x,y,z) given the parametric point (u,v). A
SurfaceLocation object is returned.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Surface object.

PcurvePtr getMappedPcurve (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Pcurve object with the specified name and
version that maps to the Surface object. If only the name is given, it is assumed
to be the unique identifier of the Pcurve object.

const PcurvePtrList& getMappedPcurves ()
Returns a list (PcurvePtrList) of reference pointers to all the Pcurve objects that
are mapped to the Surface object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Surface object in the given
arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

TopologicalViewPtr getTopologicalView ()
Returns a reference pointer to the TopologicalView object that is represented by
the Surface object. If no TopologicalView object is represented by the Surface
object an invalid reference pointer is returned.

const std::string& getTopologicalViewUid ()
Returns the unique identifier of the TopologicalView object that the Surface
object represents or an empty string if the Surface object does not represent a
TopologicalView object.

const UniqueIdList& getUidsOfMappedPcurves ()
A list (UniqueIdList) of unique identifiers of the Pcurve objects that are mapped to
the Surface object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Surface
object by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Surface object.

SurfacePtr
SurfacePtr is a type definition for a reference pointer to a Surface object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 73 02 APR 1999

SurfacePtrList
SurfacePtrList is a type definition for a list of reference pointers to Surface
objects.

SurfacePtrMap
SurfacePtrMap is a type definition for an associative map between unique
identifiers of Surface objects and their reference pointers.

TopologicalView Classes

TopologicalView
Topological Views are geometric representations that follow traditional CAD
topologies. These include Surfaces, Manifold BREP Solids, and trimmed
surfaces or Faces. A Topological View can be composed of 1 and only 1
geometric topology object. In this implementation that includes Solid, Face, and
Surface objects. Because a Topological View is a geometric entity all properties
associated with geometry are defined here and not in the subtypes.

Public Attributes:

Name id ()
Name object that identifies the TopologicalView object.

std::string name ()
Name of the TopologicalView object.

Uint32 numberOfCommonViewsUsingTopologicalView ()
Number of CommonView objects that use the TopologicalView object.

Uint32 numberOfMaterials ()
Number of Material objects associated with the TopologicalView object.

Uint32 numberOfMaterialGroups ()
Number of MaterialGroup objects associated with the TopologicalView object.

Uint32 numberOfNotes ()
Number of Note objects associated with theTopologicalView object.

TopologicalViewTypeEnum objectType ()
Specifies the type of object (Surface, Face, or Solid) that composes the
TopologicalView object.

Uint32 numberOfProperties ()
Number of Property objects associated with the TopologicalView object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the TopologicalView object.

std::string uniqueId ()
Unique identifier of the TopologicalView object.

Uint32 version ()
Version number of the TopologicalView object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 74 02 APR 1999

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the TopologicalView object.

MaterialPtr createMaterial (const std::string& name, Uint32 version)
Creates a Material object with the given name and version. This object is
associated with the TopologicalView object.

MaterialGroupPtr createMaterialGroup (const std::string& name, Uint32
version, const MaterialPtrList& materialData, const MaterialGroupPtrList&
materialGroupData)
Creates a MaterialGroup object with the given name, version, and a list of
reference pointers to MaterialGroup and Material objects. This MaterialGroup
object is associated with the TopologicalView object.

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the TopologicalView object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the TopologicalView object.

void debugPrint ()
Prints the TopologicalView object's member values to the error file cerr.

void destroyMaterial (const std::string& name, Uint32 version = 0)
Destroys the Material object with the given name and version that is contained by
this TopologicalView object. If only the name is given, it is assumed to be the
unique identifier of the Material object.

void destroyMaterialGroup (const std::string& name, Uint32 version = 0)
Destroys the MaterialGroup object with the given name and version that is
contained by this TopologicalView object. If only the name is given, it is
assumed to be the unique identifier of the MaterialGroup object.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this TopologicalView object. If only the name is given, it is assumed to be the
unique identifier of the Property object.

void destroyPropertyGroup (const std::string& name, Uint32 version = 0)
Destroys the PropertyGroup object with the given name and version that is
contained by this TopologicalView object. If only the name is given, it is
assumed to be the unique identifier of the PropertyGroup object.

Logical doesMaterialExist (const std::string& name, Uint32 version = 0)
Returns true if the Material object with the given name and version number is a
associated with the TopologicalView object, else false. If only the name is given,
it is assumed to be the unique identifier of the Material object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 75 02 APR 1999

Logical doesMaterialGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the MaterialGroup object with the given name and version number
is a associated with the TopologicalView object, else false. If only the name is
given, it is assumed to be the unique identifier of the MaterialGroup object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the
TopologicalView object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the TopologicalView object, else false. If only the name is given,
it is assumed to be the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the TopologicalView object, else false. If only the
name is given, it is assumed to be the unique identifier of the PropertyGroup
object.

const CommonViewPtrList& getCommonViewsUsingTopologicalView ()
Returns a liist (CommonViewPtrList) of reference pointers to CommonView
objects that use the TopologicalView object.

CommonViewPtr getCommonViewUsingTopologicalView (const
std::string& name, Uint32 version = 0)
Returns a reference pointer (CommonViewPtr) to the CommonView object, given
the specified name and version that the use gthe TopologicalView object. If only
the name is given, it is the unique identifier of the CommonView object.

FacePtr getFace ()
Returns a reference pointer (FacePtr) to the Face object that represents the
TopologicalView object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the TopologicalView object.

MaterialPtr getMaterial (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Material object with the given name and
version number that is contained by this TopologicalView object. If only the
name is given, it is the unique identifier of the Material object.

MaterialGroupPtr getMaterialGroup (const std::string& name, Uint32 version
= 0)
Returns a reference pointer to the MaterialGroup object with the given name and
version number that is contained by this TopologicalView object. If only the
name is given, it is the unique identifier of the MaterialGroup object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the TopologicalView object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfMaterials ()
Returns the NameVersionParis of Material objects that are associated with the
TopologicalView object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 76 02 APR 1999

const NameVersionPairList& getNameVersionPairsOfMaterialGroups ()
Returns the NameVersionPairs of MaterialGroup objects that are associated with
the TopologicalView object.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
TopologicalView object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the TopologicalView object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this TopologicalView object. If only the
name is given, it is assumed to be the unique identifier of the Property object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this TopologicalView object. If only the
name is given, it is assumed to be the unique identifier of the PropertyGroup
object.

SolidPtr getSolid ()
Returns a reference pointer to the Solid object that represents the
TopologicalView object.

SurfacePtr getSurface ()
Returns a reference pointer (SurfacePtr) to the Surface object that represents the
TopologicalView object.

const UniqueIdList& getUidsOfCommonViewsUsingTopologicalView ()
A list (UniqueIdList) of unique identifiers to CommonView objects that use the
TopologicalView object.

const std::string& getUidOfFace ()
Returns the unique identifier of the Face object that represents the
TopologicalView object

const UniqueIdList& getUidsOfMaterials ()
Returns the unique identifies of Material objects that are associated with the
TopologicalView object.

const UniqueIdList& getUidsOfMaterialGroups ()
Returns the unique identifies of MaterialGroup objects that are associated with
the TopologicalView object.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
TopologicalView object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the TopologicalView object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 77 02 APR 1999

const std::string& getUidOfSolid ()
Returns the unique identifier of the Solid object that represents the
TopologicalView object.

const std::string& getUidOfSuface ()
Returns the unique identifier of the Surface object that represents the Topological
View object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the
TopologicalView object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the TopologicalView object.

TopologicalViewPtr
TopologicalViewPtr is a type definition for a reference pointer to a
TopologicalView object.

TopologicalViewPtrList
TopologicalViewPtrList is a type definition for a list of reference pointers to
TopologicalView objects.

TopologicalViewPtrMap
TopologicalViewPtrMap is a type definition for an associative map between
unique identifiers of TopologicalView objects and their reference pointers.

LEAPS UTILITY CLASSES

The Utility package contains utility classes used by LEAPS.

ConnectionItem Classes

ConnectionItem
A ConnectionItem object is the basic object that composes a Connection object.
The ConnectionItem object is a Component, System, or Connection object.

Public Attributes:

ConnectionItemTypeEnum connectionItemType ()
Specifies the type of connection item. A connection item can be a Component,
System, or Connection object.

Uint32 numberOfConnectionsUsingItem ()
Number of Connection objects that use this ConnectionItem.

Public Operations:

ConnectionItem (const ComponentPtr& comp)
Constructs a ConnectionItem object with the given Component object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 78 02 APR 1999

ConnectionItem (const ConnectionPtr& connec)
Constructs a ConnectionItem object with the given Connection object.

ConnectionItem (const SystemPtr& sys)
Constructs a ConnectionItem object with the given System object.

const std::string& getUidOfItem ()
Returns the unique identifier of the object that is contained by the
ConnectionItem object.

ComponentPtr getComponent ()
Returns a reference pointer (ComponentPtr) to the Component object that is the
ConnectionItem object. If the ConnectionItem is not a Component, an invalid
ComponentPtr is returned.

ConnectionPtr getConnection ()
Returns a reference pointer (ConnectionPtr) to the Connection object that is the
ConnectionItem object. If the ConnectionItem is not a Connection, an invalid
ConnectionPtr is returned.

const ConnectionPtrList& getConnectionsUsingItem ()
Returns a ConnectionPtrList of all Connection objects that use this
ConnectionItem object.

ConnectionPtr getConnectionUsingItem (const std::string& name, Uint32
version = 0)
Returns a ConnectionPtr to the Connection object, given the specified name and
version, that is uses the ConnectionItem object. If only the name is given, it is
assumed to be the unique id of the Connection object.

SystemPtr getSystem ()
Returns a reference pointer (SystemPtr) to the System object that is the
ConnectionItem object. If the ConnectionItem is not a System, an invalid
SystemPtr is returned.

const UniqueIdList& getUidsOfConnectionsUsingItem ()
A list of unique ids of the Connection objects that use this ConnectionItem object.

bool isComponent ()
Returns true if the ConnectionItem object is a Component object , else false.

bool isConnection ()
Returns true if the ConnectionItem object is a Connection object , else false.

bool isSystem ()
Returns true if the ConnectionItem object is a System object , else false.

ConnectionItemList
ConnectionItemList is a type definition for a list of ConnectionItem objects.. It is
defined as follows:

std::vector<Lps::ConnectionItem>.

Curve Classes

Curve
The Curve class that represents one dimension geometry in Cartesian space.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 79 02 APR 1999

Derived from Spline

Public Attributes:

Name id ()
Name object that identifies the Curve object.

std::string name ()
Name of the Curve object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Curve object.

std::string& uniqueId ()
Unique identifier of the Curve object.

Uint32 version ()
Version number of the Curve object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Curve object.

Curve (const std::string& name, Uint32 version, const
std::vector<CartesianLocation>& pointList, Real64 toleranceIn = 0.0001)
Constructs a Curve object given a name, version number, and list of
CartiesianLocation objects.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Curve
object, else false

std::vector<CurveLocation>& evlAtEqualArc (Uint32 numLoc = 2)
Evaluate the Curve object for a given number of CurveLocations which are at
equal arclength spacing. A STL vector of CurveLocations is returned.

std::vector<CurveLocation>& evlAtEqualParametric (Uint32 numLoc = 2)
Evaluates the Curve object for a given number of CurveLocations which are at
equal parametric spacing. A STL vector of CurveLocations is returned.

const CartesianLocation evlForCartesianLoc (Real64 s)
Evaluate the Curve object for (x, y, z) given (s). A CartesianLocation object is
returned.

const CurveLocation evlForCurveLoc (Real64 s)
Evaluate the Curve object for (x, y, z) given (s). A CurveLocation object is
returned.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Curve object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Curve object in the given
arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 80 02 APR 1999

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Curve
object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Curve object.

Error Class

Error
Error provides error information for exception handling for LEAPS.

Derived from std::exception

Public Attributes:

char* errorMessage ()
Error message that describes the error encountered.

char* routineName ()
Name of routine in which the exception occured.

Public Operations:

Error (const char* routineIn, const char* messageIn = "")
Constructs an Error object given the name of routine in which the exception
occured and a message that describes the error encountered.

char* what ()
Error message that describes the error encountered.

Location Classes

CartesianLocation
The CartesianLocation class defines a location in Cartesian space as the
coordinates (x,y,z).

Public Attributes:

Real64 x ()
x coordinate of the cartesian location (x, y, z)

Real64 y ()
y coordinate of the cartesian location (x, y, z)

Real64 z ()
z coordinate of the cartesian location (x, y, z)

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 81 02 APR 1999

Public Operations:

CartesianLocation (const Real64 xIn = 0.0, const Real64 yIn = 0.0, const
Real64 zIn = 0.0)
Constructs a CartesianLocation object given with the given x, y, and z values.

CartesianLocation (const Real64List& coords)
Constructs a CartesianLocation object given an STL vector of Real64 values
where x is at index 0, y is at index 1, and z is at index 2.

Real64 evlDistanceFromCartesianLoc (const CartesianLocation& cartPnt)
Returns the shortest distance from the given CartesianLocation object.

Real64 evlDistanceFromCartesianLoc (const Real64List& coords)
Returns the shortest distance from the given STL vector of Real64 values where
x is at index 0, y is at index 1, and z is at index 2.

Real64 evlDistanceFromCartesianLoc (Real64 xCoord, Real64 yCoord,
Real64 zCoord)
Returns the shortest distance from the given x, y, and z.

Real64List getCartesianLocation ()
Gets the cartesian location (x, y, z) where x is stored in index 0, y is stored in
index 1, and z is stored at index 2.

Real64List getCartesianLocation (Real64& xOut, Real64& yOut, Real64&
zOut)
Gets the cartesian location (x, y, z) where x is stored in index 0, y is stored in
index 1, and z is stored at index 2. Furthermore, the cartesian location values is
returned in the specified arguments.

CoEdgeLocation
The CoEdgeLocation class provides a list of PcurveLocations (s, u,v,x, y, z),
evaluated at a parametric value (s) of the CoEdge object.

Public Attributes:

Real64 s ()
s is the parametric value at which the PcurvePoints were evaluated.

std::vector<PcurveLocation> pcurveLocationList ()
STL vector of PcurvePoints evaluated at parametric value (s)

Public Operations:

CoEdgeLocation (CoEdgePtr& coEdge, const Real64 s)
CoEdgePoint Constructor

const CartesianLocation getCartesianLocation (Real64& xOut, Real64& yOut,
Real64& zOut)
Gets the cartesian location (x, y, z). Furthermore, the cartesian location values is
returned in the specified arguments.

std::pair<Real64, std::vector<PcurveLocation> > getCoEdgeLocation
(Real64& sOut, std::vector<PcurveLocation>& pcrvPntListOut)
Evaluates the CoEdge object at the parametric value (s) and returns a std::pair
where the first element is the parametric value (s) and the second element is a
STL vector of PcurveLocations (s, u,v,x, y, z).

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 82 02 APR 1999

CurveLocation
A CurveLocation is defined by the evaluation of a Curve object at the parametric
value (s) for the Curve object's Cartesian coordinates (x,y,z).

Public Attributes:

Real64 s ()
s the parametric coordinate of the curve location

Real64 x ()
x coordiate of the curve location

Real64 y ()
y coordiate of the curve location

Real64 z ()
z coordiate of the curve location

Public Operations:

CurveLocation (const Curve& curveIn, Real64 sIn = 0.0)
CurveLocation Constructor

Real64List getCartesianLocation (Real64& xOut, Real64& yOut, Real64&
zOut)
Gets the cartesian point (x, y, z) where x is stored in index 0, y is stored in index
1, and z is stored at index 2. Furthermore, the cartesian point values is returned
in the specified arguments.

Real64List getCurveLocation (Real64& sOut, Real64& xOut, Real64& yOut,
Real64& zOut)
Returns a STL vector of Real64 values that define the CurveLocation. s is
stored at index 0, x is stored at index 1, y is stored at index 2, and z is stored at
index 3. Furthermore, the values of the curve location is returned in the given
arguments.

PcurveLocation
A PcurveLocation is defined by the evaluation of a Pcurve object at the
parametric value (s) for the Pcurve object's surface parametric values (u,v) and
the surface Cartesian coordinates (x,y,z) cooresponding to (u,v).

Public Attributes:

Real64 s ()
s the parametric coordinate of the pcurve location

Real64 u ()
U parametric value used to evaluate the SurfacePoint.

Real64 v ()
V parametric value used to evaluate the SurfacePoint.

Real64 x ()
x coordiate of the SurfacePoint object

Real64 y ()
y coordiate of the SurfacePoint object

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 83 02 APR 1999

Real64 z ()
z coordiate of the SurfacePoint object

Public Operations:

PcurveLocation (PcurvePtr& pcurve, const Real64 sIn = 0.0)
PcurvePoint Constructor

CartesianLocation getCartesianLocation ()
Returns the CartesianLocation object for the PcurveLocation..

Real64List getCartesianLocation (Real64& xOut, Real64& yOut, Real64&
zOut)
Gets the cartesian point (x, y, z) where x is stored in index 0, y is stored in index
1, and z is stored at index 2. Furthermore, the cartesian point values is returned
in the specified arguments.

Real64List getParametricLocation (Real64& sOut, Real64& uOut, Real64&
vOut)
Returns a STL vector of Real64 values that define the parametric values of the
PcurvePoint and SurfacePoint. s is stored at index 0, u is stored at index 1, and
v is stored at index 2. Furthermore, the parametric values of the pcurve point
and surface point is returned in the given arguments.

Real64List getPcurveLocation (Real64& sOut, Real64& uOut, Real64& vOut,
Real64& xOut, Real64& yOut, Real64& zOut)
Returns a STL vector of Real64 values that define the PcurveLocation. s is
stored at index 0, u is stored at index 1, v is stored at index 2, x is stored at index
3, y is stored at index 4, and z is stored at index 5. Furthermore, the values of
the pcurve point is returned in the given arguments.

SurfaceLocation
The SurfaceLocation class defines a location on a Surface object. The location
is derived by the evaluation of the Surface object at the Surface parametric
values (u,v) for the Surface object's Cartesian coordinates (x,y,z).

Public Attributes:

Real64 u ()
U parametric value used to evaluate the SurfaceLocation.

Real64 v ()
V parametric value used to evaluate the SurfaceLocation.

Real64 x ()
x coordiate of the SurfaceLocation object

Real64 y ()
y coordiate of the SurfaceLocation object

Real64 z ()
z coordiate of the SurfaceLocation object

Public Operations:

SurfaceLocation (SurfacePtr& surface, Real64 uIn = 0.0, Real64 vIn = 0.0)
SurfaceLocation Constructor

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 84 02 APR 1999

Real64List getCartesianLocation (Real64& xOut, Real64& yOut, Real64&
zOut)
Gets the cartesian point (x, y, z) where x is stored in index 0, y is stored in index
1, and z is stored at index 2. Furthermore, the cartesian point values is returned
in the specified arguments.

Real64List getParametricLocation (Real64& uOut, Real64& vOut)
Returns a STL vector of Real64 values that define the parametric values of the
SurfaceLocation. u is stored at index 0, and v is stored at index 1. Furthermore,
the parametric values of the surface point is returned in the given arguments.

Real64List getSurfaceLocation (Real64& uOut, Real64& vOut, Real64& xOut,
Real64& yOut, Real64& zOut)
Returns a STL vector of Real64 values that define the SurfaceLocation. u is
stored at index 0, v is stored at index 1, x is stored at index 2, y is stored at index
3, and z is stored at index 4. Furthermore, the values of the surface point is
returned in the given arguments.

Material Classes
The Materials Package contains classes used by the MaterialGroup Class.

Material
The Material class contain properties that pertain specifically to attributes of
materials. These attributes do not depend on the geometry.

Public Attributes:

Name id ()
Name object that identifies the Material object.

std::string name ()
Name of the Material object.

Uint32 numberOfMaterialGroupsUsingMaterial ()
Number of MaterialGroup objects that use this Material object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Material object.

Uint32 numberOfProperties ()
Number of Property objects associated with the Material object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with this object.

std::string& uniqueId ()
Unique identifier of the Material object.

Uint32 version ()
Version number of the Material object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Material object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 85 02 APR 1999

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the Material object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the Material object.

void debugPrint ()
Prints the Material object's member values to the error file cerr.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this Material object. If only the name is given, it is assumed to be the unique
identifier of the Property object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Material
object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the Material object, else false. If only the name is given, it is
assumed to be the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the Material object, else false. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Material object.

const MaterialGroupPtrList& getMaterialGroupsUsingMaterial ()
Returns a list (MaterialGroupPtrList) of reference pointers to MaterialGroup
objects that use the Material object.

MaterialGroupPtr getMaterialGroupUsingMaterial (const std::string& name,
Uint32 version = 0)
Returns a reference pointer (MaterialGroupPtr) to the MaterialGroup object with
the given name and version that uses the Material object. If only the name is
given, it is assumed to be the unique identifier of the MaterialGroup object.

MaterialGroupPtr getMaterialGroupUsingMatlAsAggregate ()
Returns a MaterialGroupPtr to the Material object, that uses this Material object
as its aggregate material. If the Material object is not an aggregate material, an
invalid MaterialGroupPtr is returned.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Material object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
Material object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 86 02 APR 1999

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the Material object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this Material object. If only the name is
given, it is assumed to be the unique identifier of the Property object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this Material object. If only the name is
given, it is assumed to be the unique identifier of the PropertyGroup object.

const UniqueIdList& getUidsOfMaterialGroupsUsingMaterial ()
Returns a list (UniqueIdList) of unique identifiers to the MaterialGroup objects
that use this Material object.

const std::string& getUidOfMaterialGroupUsingMatlAsAggregate ()
If the Material object is used as an aggregate material of a MaterialGroup object,
the unique id of the MaterialGroup object is returned. If the Material object is not
used as an aggregate material, an empty string is returned.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
Material object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the Material object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Material
object by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Material object.

void removePropertyGroup (const std::string& name, Uint32 version = 0)
Removes the association of the PropertyGroup object with the specified name
and version with the Material object.

MaterialPtr
MaterialPtr is a type definition for a reference pointer to a Material object.

MaterialPtrList
MaterialPtrList is a type definition for a list of reference pointers to Material
objects. It is defined as follows:

std::vector<MaterialPtr>.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 87 02 APR 1999

MaterialPtrMap
MaterialPtrMap is a type definition for an associative map between unique
identifiers of Material objects and their reference pointers.. It is defined as
follows:

std::map<std::string, MaterialPtr>

MaterialGroup
The MaterialGroup class provides the ability to group Material objects and/or
other MaterialGroup objects together to compose a logical view of a material or a
composite material. The MaterialGroup class also provides an aggregate
material view of the MaterialGroup object.

Public Attributes:

Name id ()
Name object that identifies the MaterialGroup object.

std::string name ()
Name of the MaterialGroup object.

Uint32 numberOfMaterials ()
Number of Material objects that compose the MaterialGroup object.

Uint32 numberOfMaterialGroups ()
Number of MaterialGroup objects that compose the MaterialGroup object.

Uint32 numberOfMaterialGroupsUsingMaterialGroup ()
Number of MaterialGroup objects that use the MaterialGroup object.

Uint32 numberOfNotes ()
Number of Note objects associated with the MaterialGroup object.

Uint32 numberOfProperties ()
Number of Property objects associated with the MaterialGroup object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects associated with the MaterialGroup object.

std::string& uniqueId ()
Unique identifier of the MaterialGroup object.

Uint32 version ()
Version number of the MaterialGroup object.

Public Operations:

void addAggregateMaterial (const MaterialPtr& aggregateMatl)
Adds the given Material object as the aggregate material of this MaterialGroup
object.

void addMaterial (const MaterialPtr& materialToAdd)
Adds a Material object to the MaterialGroup object.

void addMaterialGroup (const MaterialGroupPtr& groupToAdd)
Adds a MaterialGroup object to the MaterialGroup object.

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the MaterialGroup object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 88 02 APR 1999

PropertyPtr createProperty (const std::string& name, Uint32 version, const
PropertyDataPtr& propData)
Creates a Property object with the given name, version, and property data. This
object is associated with the MaterialGroup object.

PropertyGroupPtr createPropertyGroup (const std::string& name, Uint32
version, const PropertyPtrList& propertyData, const
PropertyGroupPtrList& propertyGroupData)
Creates a PropertyGroup object with the given name, version, and a list of
reference pointers to PropertyGroup and Property objects. This PropertyGroup
object is associated with the MaterialGroup object.

void debugPrint ()
Prints the MaterialGroup object's member values to the error file cerr.

void destroyProperty (const std::string& name, Uint32 version = 0)
Destroys the Property object with the given name and version that is contained
by this MaterialGroup object. If only the name is given, it is assumed to be the
unique identifier of the Property object.

Logical doesAggregateMaterialExist ()
Returns true if the MaterialGroup object has an aggregate material associated
with the it, else false.

Logical doesMaterialExist (const std::string& name, Uint32 version = 0)
Returns true if Material object exists, else false

Logical doesMaterialGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the MaterialGroup object with the given name and version number
is a associated with the MaterialGroup object, else false. If only the name is
given, it is the unique identifier of the MaterialGroup object.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the
MaterialGroup object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if the Property object with the given name and version number is a
associated with the MaterialGroup object, else false. If only the name is given, it
is the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is a associated with the MaterialGroup object, else false. If only the
name is given, it is the unique identifier of the PropertyGroup object.

MaterialPtr getAggregateMaterial ()
Returns a MaterialPtr to the Material object, that is the aggregate material of the
MaterialGroup object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the MaterialGroup object.

MaterialPtr getMaterial (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Material object with the given name and
version number that is contained by this MaterialGroup object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 89 02 APR 1999

const MaterialPtrList& getMaterials ()
Returns a list (MaterialPtrList) of reference pointers to Material objects that
compose the MaterialGroup object.

MaterialGroupPtr getMaterialGroup (const std::string& name, Uint32 version
= 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this PropertyGroup object. If only the name
is given, it is assumed to be the unique identifier of the PropertyGroup object.

const MaterialGroupPtrList& getMaterialGroups ()
Returns a list (MaterialGroupPtrList) of reference pointers to MaterialGroup
objects that compose the MaterialGroup object.

const MaterialGroupPtrList& getMaterialGroupsUsingMaterialGroup ()
Returns a list (MaterialGroupPtrList) of reference pointers to MaterialGroup
objects that use the MaterialGroup object.

MaterialGroupPtr getMaterialGroupUsingMaterialGroup (const std::string&
name, Uint32 version = 0)
Returns a reference pointer (MaterialGroupPtr) to the MaterialGroup object with
the given name and version that uses the MaterialGroup object. If only the name
is given, it is assumed to be the unique identifier of the MaterialGroup object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the MaterialGroup object in the given
arguments.

const NameVersionPairList& getNameVersionPairsOfProperties ()
Returns the NameVersionPairs of Property objects that are associated with the
MaterialGroup object.

const NameVersionPairList& getNameVersionPairsOfPropertyGroups ()
Returns the NameVersionPairs of PropertyGroup objects that are associated with
the MaterialGroup object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this MaterialGroup object. If only the name
is given, it is assumed to be the unique identifier of the Property object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this MaterialGroup object. If only the name
is given, it is assumed to be the unique identifier of the PropertyGroup object.

const std::string& getUidOfAggregateMaterial ()
The unique id of the Material object that is associated with the MaterialGroup
object as the aggregate material is returned. An empty string is returned if there
is no aggregate material.

const UniqueIdList& getUidsOfMaterials ()
Returns a list (UniqueIdList) of unique identifiers of Material objects that compose
the MaterialGroup object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 90 02 APR 1999

const UniqueIdList& getUidsOfMaterialGroups ()
Returns a list (UniqueIdList) of unique identifiers of MaterialGroup objects that
compose the MaterialGroup object.

const UniqueIdList& getUidsOfMaterialGroupsUsingMaterialGroup ()
Returns a list (UniqueIdList) of unique identifiers to the MaterialGroup objects
that use this MaterialGroup object.

const UniqueIdList& getUidsOfProperties ()
Returns the unique identifies of Property objects that are associated with the
MaterialGroup object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns the unique identifies of PropertyGroup objects that are associated with
the MaterialGroup object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the
MaterialGroup object, by replacing the comment with the given comment.

void removeAggregateMaterial ()
Removes the Material object that is associated with the MaterialGroup object as
its aggregate material.

void removeMaterial (const std::string& name, Uint32 version = 0)
Removes the Material object with the specified name and version from this
MaterialGroup object.

void removeMaterialGroup (const std::string& name, Uint32 version = 0)
Removes the MaterialGroup object with the specified name and version from this
MaterialGroup object.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the MaterialGroup object.

void removePropertyGroup (const std::string& name, Uint32 version = 0)
Removes the association of the PropertyGroup object with the specified name
and version with the MaterialGroup object.

MaterialGroupPtr
MaterialGroupPtr is a type definition for a reference pointer to a MaterialGroup
object.

MaterialGroupPtrList
MaterialGroupPtrList is a type definition for a list of reference pointers to
MaterialGroup objects. It is defined as follows:

std::vector<MaterialGroupPtr>.

MaterialGroupPtrMap
MaterialGroupPtrMap is a type definition for an associative map between unique
identifiers of MaterialGroup objects and their reference pointers. It is defined as
follows:

std::map<std::string, MaterialGroupPtr>

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 91 02 APR 1999

Name Classes
The Name Package contains all classes that are used by the Name Class.

DateTime
Date and time information needed to time stamp objects.

Public Attributes:

short day ()
Day in the month (1-31)

short month ()
Month of the year (1-12)

double timeInSeconds ()
Number of seconds that have elapsed since midnight for the given day.

time_t unixTime ()
The number of seconds elapsed since midnight (00:00:00), January 1, 1970,
coordinated universal time.

short year ()
Number of years from AD

Public Operations:

void debugPrint ()
Prints the DateTime object's member values to the error file cerr.

std::string& getDateTimeString ()
Returns a reference to a string that contains the DateTime in the form
"1997/01/31.23:15:54 ". The string should be copied if the user wants it to be
persistent.

void setDateTime ()
Sets the DateTime object's state to the current date and time.

Name
Name and audit information needed to identify LEAPS objects

Public Attributes:

std::string completedBy ()
User who marks the Name object as completed.

DateTime completedOn ()
The date/time the Name object was marked as completed.

std::string createdBy ()
User who created the Name object.

DateTime createdOn ()
The date/time the Name object was created.

std::string globalId ()
Global identifier of the Name object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 92 02 APR 1999

std::string id ()
The name of LEAPS object. The name must be alphanumeric and must begin
with an alpha character.

std::string modifiedBy ()
User who last modified the Name object.

DateTime modifiedOn ()
The date/time the Name object was last modified.

unsigned long numberOfNotes ()
Number of notes that are associated with the Name object.

std::string uniqueId ()
Unique identifier of the Name object.

Uint32 version ()
Version number of the id.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Name object.

void debugPrint ()
Prints the Name object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key exists, else false

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Name object.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

const std::set<Note>& getNotes ()
Returns the set of Note objects associated with the Name object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key by replacing the comment with the
given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Name object.

Note
A Note associates user-defined information with a key and maintains audit
information.

Public Attributes:

std::string comment ()
General information associated with the key of the Note object.

std::string createdBy ()
The user who created the Note object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 93 02 APR 1999

DateTime createdOn ()
The date/time the Note object was created.

std::string key ()
The key to which general information is associated.

std::string modifiedBy ()
The user who last modified the Note object.

DateTime modifiedOn ()
The date/time the Note object was last modified.

Public Operations:

void debugPrint ()
Prints the Note object's member values to the error file cerr.

NameValuePair Classes

NameValuePair
NameValuePair associates a label and a real number.

Public Attributes:

std::string label ()
Label that is associated with a real number.

Real64 value ()
A real number that is associated with the label.

Public Operations:

void getNameValue (std::string& label, Real64 value)
Gets the label and value of the NameValuePair object.

void setNameValue (const std::string& label, const Real64 value)
Sets the label and value of the NameValuePair object.

NameValuePairList
NameValuePairList is a type definition for a list of NameValuePair objects

Property Classes
The Properties Package contains classes used by the PropertyGroup Class.

IntegerScalar
The purpose of IntegerScalar is to provide a LEAPS data type that can store an
integer as data.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 94 02 APR 1999

Derived from PropertyData

Public Attributes:

PropertyDataTypeEnum dataType ()
The data type of the PropertyData object.

Public Operations:

void debugPrint ()
Prints the IntegerScalar object's member values to the error file cerr.

IntegerScalar (const Real64 value = 0.0)
Constructs a IntegerScalar object with the given real 64 bit number.

IntegerScalar (const Real32 value)
Constructs a IntegerScalar object with the given integer number.

IntegerScalar (const Int32 value)
Constructs a IntegerScalar object with the given 32 bit integer.

IntegerScalar (const Uint32 value)
Constructs a IntegerScalar object with the given unsigned 32 bit integer..

IntegerSTLVector
The purpose of IntegerSTLVector is to provide a LEAPS data type that can store
a list of integers as data. A STL vector is used as the container for the integers.

Derived from PropertyData, Int32List

Public Attributes:

PropertyDataTypeEnum dataType ()
The data type of the PropertyData object.

Public Operations:

IntegerSTLVector (const Int32* integerArray, const Uint32
integerArrayLength)
Constructs a IntegerSTLVectpr object with the given the array of integers of
integerArrayLength.

IntegerSTLVector (const std::vector<Int32>& integerVector)
Constructs a IntegerSTLVectpr object with the given the STL vector of integers

void debugPrint ()
Prints the IntegerSTLVector object's member values to the error file cerr.

Property
Property objects associate data with a name and are used as metadata for
representing an attibute of an object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 95 02 APR 1999

Public Attributes:

PropertyDataTypeEnum dataType ()
The data type of the PropertyData object that the Property object points to.

Name id ()
The id attribute is a Name object that identifies the Property object.

std::string name ()
Name of the Property object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Property object.

Uint32 numberOfPropertyGroupsUsingProperty ()
Number of PropertyGroup objects that uses the Property object.

std::string& uniqueId ()
Unique string identifier of the Property object.

Uint32 version ()
Version number of the Property object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Property object.

ToolPtr createTool (const std::string& name, Uint32 version)
Creates a Tool object which is associated with the Property object. This Tool
object should be the tool that was used to determine the Property object.

void debugPrint ()
Prints the Property object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Property
object, else false

Logical doesToolExist ()
Returns true if a Tool object was associated with the Property object, else false.

void getData (RealScalar& data)
Returns the RealScalar property data in the given argument.

void getData (RealSTLVector& data)
Returns the RealSTLVector property data in the given argument.

void getData (IntegerScalar& data)
Returns the IntegerScalar property data in the given argument.

void getData (IntegerSTLVector& data)
Returns the IntegerSTLVector property data in the given argument.

void getData (String& data)
Returns the String property data in the given argument.

void getData (StringSTLVector& data)
Returns the StringSTLVector property data in the given argument.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 96 02 APR 1999

void getData (SplineData& data)
Returns the SplineData property data in the given argument.

PropertyDataPtr getDataPtr ()
Returns a reference pointer to the property data.

PropertyDataTypeEnum getDataType ()
Returns the data type that is contained by the Property object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Property object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Property object in the given
arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

const PropertyGroupPtrList& getPropertyGroupsUsingProperty ()
Returns a list (PropertyGroupPtrList) of reference pointers to PropertyGroup
objects that use the Property object.

PropertyGroupPtr getPropertyGroupUsingProperty (const std::string&
name, Uint32 version = 0)
Returns a reference pointer (PropertyGroupPtr) to the PropertyGroup object with
the given name and version that uses the Property object. If only the name is
given, it is the unique identifier of the PropertyGroup object.

ToolPtr getTool ()
Returns a reference pointer to the Tool object that was used to determine the
Property object with the Property object.

const UniqueIdList& getUidsOfPropertyGroupsUsingProperty ()
Returns a list (UniqueIdList) of unique identifiers to the PropertyGroup objects
that use this Property object.

const std::string& getUidOfTool ()
Returns the unique identifier of the Tool object that was associated with the
Property object or an empty string if there is no Tool object associated with the
Property object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Property
object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Property object.

PropertyPtr
PropertyPtr is a type definition for a reference pointer to a Property object.

PropertyPtrList
PropertyPtrList is a type definition for a list of reference pointers to Property
objects.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 97 02 APR 1999

PropertyPtrMap
PropertyPtrMap is a type definition for an associative map between unique
identifiers of Property objects and their reference pointers.

PropertyData
PropertyData is an abstract class from which LEAPS data classes are derivied
from.

Public Attributes:

PropertyDataTypeEnum dataType ()
The data type of the PropertyData object.

Public Operations:

void debugPrint ()
A virtual member function that prints the PropertyData object's member values to
the error file cerr.

PropertyDataPtr
PropertyDataPtr is a type definition for a reference pointer to a PropertyData
object.

PropertyGroup
A PropertyGroup object associates a name with a group of Property objects
and/or PropertyGroup objects. The purpose of this class is to allow a particular
view of properties.

Public Attributes:

Name id ()
Name object that identifies the PropertyGroup object.

std::string& uniqueId ()
Unique identifier of the PropertyGroup object.

std::string name ()
Name of the PropertyGroup object.

Uint32 version ()
Version number of the PropertyGroup object.

Uint32 numberOfNotes ()
Number of Note objects associated with the PropertyGroup object.

Uint32 numberOfPropertyGroups ()
Number of PropertyGroup objects that are a part of the PropertyGroup object.

Uint32 numberOfProperties ()
Number of Property objects that are a part of the PropertyGroup object.

Uint32 numberOfPropertyGroupsUsingPropertyGroup ()
Number of PropertyGroup objects that use the PropertyGroup object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 98 02 APR 1999

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the PropertyGroup object.

void addProperty (const PropertyPtr& propertyToAdd)
Adds a Property object to this the PropetryGroup object.

void addPropertyGroup (const PropertyGroupPtr& groupToAdd)
Adds a PropertyGroup object this PropetryGroup object.

void debugPrint ()
Prints the PropertyGroup object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the
PropertyGroup object, else false

Logical doesPropertyExist (const std::string& name, Uint32 version = 0)
Returns true if Property object exists, else false. If only the name is given, it is
the unique identifier of the Property object.

Logical doesPropertyGroupExist (const std::string& name, Uint32 version =
0)
Returns true if the PropertyGroup object with the given name and version
number is part of this PropertyGroup object, else false. If only the name is given,
it is the unique identifier of the PropertyGroup object.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the PropertyGroup object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the PropertyGroup object in the given
arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

const PropertyPtrList& getProperties ()
Returns a list (PropertyPtrList) of reference pointers to Property objects that
compose the PropertyGroup object.

PropertyPtr getProperty (const std::string& name, Uint32 version = 0)
Returns a reference pointer to the Property object with the given name and
version number that is contained by this PropertyGroup object.

PropertyGroupPtr getPropertyGroup (const std::string& name, Uint32
version = 0)
Returns a reference pointer to the PropertyGroup object with the given name and
version number that is contained by this PropertyGroup object. If only the name
is given, it is the unique identifier of the PropertyGroup object.

const PropertyGroupPtrList& getPropertyGroups ()
Returns a list (PropertyGroupPtrList) of reference pointers to PropertyGroup
objects that compose the PropertyGroup object.

const PropertyGroupPtrList& getPropertyGroupsUsingPropertyGroup ()
Returns a list (PropertyGroupPtrList) of reference pointers to PropertyGroup
objects that use the PropertyGroup object.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 99 02 APR 1999

PropertyGroupPtr getPropertyGroupUsingPropertyGroup (const
std::string& name, Uint32 version = 0)
Returns a reference pointer (PropertyGroupPtr) to the PropertyGroup object with
the given name and version that uses the PropertyGroup object. If only the
name is given, it is the unique identifier of the PropertyGroup object.

const UniqueIdList& getUidsOfProperties ()
Returns a list (UniqueIdList) of unique identifiers of Property objects that
compose the PropertyGroup object.

const UniqueIdList& getUidsOfPropertyGroups ()
Returns a list (UniqueIdList) of unique identifiers of PropertyGroup objects that
compose the PropertyGroup object.

const UniqueIdList& getUidsOfPropertyGroupsUsingPropertyGroup ()
Returns a list (UniqueIdList) of unique identifiers to the PropertyGroup objects
that use this PropertyGroup object.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the
PropertyGroup object, by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the PropertyGroup object.

void removeProperty (const std::string& name, Uint32 version = 0)
Removes the Property object with the specified name and version from this
PropertyGroup object.

void removePropertyGroup (const std::string& name, Uint32 version = 0)
Removes the PropertyGroup object with the specified name and version from this
PropertyGroup object.

PropertyGroupPtr
PropertyGroupPtr is a type definition for a reference pointer to a PropertyGroup
object.

PropertyGroupPtrList
PropertyGroupPtrList is a type definition for a list of reference pointers to
PropertyGroup objects.

PropertyGroupPtrMap
PropertyGroupPtrMap is a type definition for an associative map between unique
identifiers of PropertyGroup objects and their reference pointers.

RealScalar
The purpose of RealScalar is to provide a LEAPS data type that can store a real
number as data provide operations of a real number.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 100 02 APR 1999

Derived from PropertyData

Public Attributes:

PropertyDataTypeEnum dataType ()
The data type of the PropertyData object.

Public Operations:

void debugPrint ()
Prints the RealScalar object's member values to the error file cerr.

RealScalar (const Real64 value = 0.0)
Constructs a RealScalar object with the given real number.

RealScalar (const Real32 value)
Constructs a RealScalar object with the given real number.

RealScalar (const Int32 value)
Constructs a RealScalar object with the given a 32 bit integer.

RealScalar (const Uint32 value)
Constructs a RealScalar object with the given unsigned 32 bit integer..

RealSTLVector
The purpose of RealSTLVector is to provide a LEAPS data type that can store a
list of real numbers as data. A STL vector is used as the container for the real
numbers.

Derived from PropertyData, Real64List

Public Attributes:

PropertyDataTypeEnum dataType ()
The data type of the PropertyData object.

Public Operations:

void debugPrint ()
Prints the RealSTLVector object's member values to the error file cerr.

RealSTLVector (const Real64* realArray, const Uint32 realArrayLength)
Constructs a RealSTLVectpr object with the given the array of real numbers of
realArrayLength.

RealSTLVector (const std::vector<Real64>& realVector)
Constructs a RealSTLVectpr object with the given the STL vector of real
numbers.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 101 02 APR 1999

SplineData

Derived from PropertyData, Spline

Public Attributes:

PropertyDataTypeEnum dataType ()
The data type of the PropertyData object.

Public Operations:

void debugPrint ()
A virtual member function that prints the PropertyData object's member values to
the error file cerr.

SplineData (const SplineDomainVariableList& domainVars, const
SplineRangeVariableList& rangeVars, const Real64List& weights)
Construct a SplineData object that is a non-rational spline.

SplineData (const SplineDomainVariableList& domainVars, const
SplineRangeVariableList& rangeVars)
Construct a SplineData object that is a rational spline.

SplineData (const Real64List& cArray, const CharStringList& domainLabels,
const CharStringList& rangeLabels)
Construct a SplineData object with a CArray.

SplineData (Int32 dtnurbsHandle)
Construct a SplineData object given a DTNURBS handle.

SplineData (const std::vector<CartesianLocation>& pointList, Real64
toleranceIn = 0.0001, Logical reverseParWanted = false)
Construct a SplineData object given a list of CartesianLocation objects.

String
The purpose of String is to provide a LEAPS data type that can store a string of
characters as data.

Derived from PropertyData, CharString

Public Attributes:

PropertyDataTypeEnum dataType ()
The data type of the PropertyData object.

Public Operations:

void debugPrint ()
Prints the String object's member values to the error file cerr.

String (const std::string& charString = "")
Constructs a String object with the given string.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 102 02 APR 1999

StringSTLVector
The purpose of StringSTLVector is to provide a LEAPS data type that can store a
list of strings as data. A STL vector is used as the container for the strings.

Derived from PropertyData, CharStringList

Public Attributes:

PropertyDataTypeEnum dataType ()
The data type of the PropertyData object.

Public Operations:

void debugPrint ()
Prints the StringSTLVector object's member values to the error file cerr.

StringSTLVector (const Char8** charStringArray, const Uint32
charStringArrayLength)
Constructs a StringSTLVector object with the given array of strings

StringSTLVector (const std::vector<std::string>& stringVector)
Constructs a StringSTLVector object with the given STL vector of strings.

Spline Classes

Spline
The spline class is a supertype of those classes that represent geometry,
topology, and behavior models. It is non-dimensional in domain and range.

Public Attributes:

Int32 dtnurbsHandle ()
The Spline class uses the DtNurbs Spline library. This attribute is the handle that
identifies the DtNurbs entity used by the DtNurbs Spline library.

Uint32 numberOfRangeVars ()
Number of range (dependent) variables associated with the spline.

Uint32 numberOfDomainVars ()
Number of domain (independent) variables associated with the spline.

Uint32 numberOfWeights ()
Number of weights that are associated with the spline.

Logical isRational ()
Indicates whether the spline is rational or nonrational.

SplineDomainVariableList domainVariables ()
Domain (independent) variables of the spline.

SplineRangeVariableList rangeVariables ()
Range (dependent) variables of the spline.

Real64List weightData ()
Weights of the rational spline.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 103 02 APR 1999

Public Operations:

void create (const SplineDomainVariableList& domainVars, const
SplineRangeVariableList& rangeVars, const Real64List& weights)
Initializes a Spline object which is a non-uniform rational spline. If the given
weights size is 0, the spline is assumed to be non-rational.

const std::vector<Real64List>& evlAtEqualParametric (const Uint32List&
numLocs)
Evaluate Spline at a number of points at equal parametric spacing given the
number of points. . A STL vector of Real64List is returned.

const Real64List& evlSpline (const Real64List& domainValues)
Evaluate spline range values given spline domain values. The range values are
returned in a reference to a Real64List. The spline domain variables are given in
a Real64List.

const Real64List& getCArray ()
Returns a reference to a DTNURBS spline communication array that represents
the Spline object. The life of the reference is only valid until the next call to this
method.

const SplineDomainVariable& getDomainVar (Uint32 position = 1)
Return a reference to the SplineDomainVariable object given the specified
position.

const SplineRangeVariable& getRangeVar (Uint32 position = 1)
Return a reference to the SplineRangeVariable object given the specified
position.

Real64 getWeight (Uint32 position = 1)
Return the weight at the specifiecd position.

SplineDomainVariable
The SplineDomainVariable class defines the function domain variables used by
the Spline class. In spline terminology the domain variables contain the
parametric information.

Public Attributes:

Real64 highValue ()
Value of maximum knot

Real64List knots ()
Knots of the spline that are associated with the independent (domain) variable.

std::string label ()
Label that describes the independent (domain) variable

Real64 lowValue ()
Value of minimum knot.

Uint32 numberOfKnots ()
Number of knots associated with the independent (domain) variable that are part
of the spline.

Uint32 order ()
Order of the spline for the independent (domain) variable.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 104 02 APR 1999

Public Operations:

void debugPrint ()
Prints the objects member values to the error file cerr.

void create (const Real64List& knots, Uint32 order, const std::string& label =
"")
Creates a SplineDomainVariable object with the given knots, order, and label.

Real64 getKnot (const Uint32 position = 1)
Returns the knot specified by position.

SplineDomainVariableList
SplineDomainVariableList is a type definition for a list of SplineDomainVariable
objects.. It is defined as follows:

std::vector<Lps::SplineDomainVariable>.

SplineRangeVariable
The SplineRangeVariable class defines the function range variables used by the
Spline class. In spline terminology the range variables contain control points
information.

Public Attributes:

Real64List controlPoints ()
Control points associated with the range (dependent) variable that control the
spline.

std::string label ()
Label that describes the dependent (range) variable

Uint32 numberOfControlPnts ()
Number of control points. Control points control the spline.

Public Operations:

void debugPrint ()
Prints the objects member values to the error file cerr.

void create (const std::vector<Real64>& cntrlPnts, const std::string& label =
"")
Creates a SplineRangeVariable object with the given control points and label.

Real64 getControlPnt (const Uint32 position = 1)
Returns the control point (coefficient) at the specified position

SplineRangeVariableList
SplineRangeVariableList is a type definition for a list of SplineRangeVariable
objects.. It is defined as follows:

std::vector<Lps::SplineRangeVariable>.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 105 02 APR 1999

Tool Classes

Tool

Public Attributes:

Name id ()
Name object that identifies the Tool object.

std::string name ()
Name of the Tool object.

Uint32 numberOfNotes ()
Number of Note objects associated with the Tool object.

std::string& uniqueId ()
Unique identifier of the Tool object.

Uint32 version ()
Version number of the Tool object.

Public Operations:

void addNote (const std::string& key, const std::string& comment)
Creates a Note object with the given key and comment. The Note object is
added to the list of Note objects associated with the Tool object.

void debugPrint ()
Prints the Tool object's member values to the error file cerr.

Logical doesNoteExist (const std::string& key)
Returns true if the Note object with the given key is associated with the Tool
object, else false.

const KeyList& getKeysOfNotes ()
Returns the keys of Note objects associated with the Tool object.

void getNameAndVersion (std::string& nameOut, Uint32& versionOut)
Returns the name and version number of the Tool object in the given arguments.

const Note& getNote (const std::string& key)
Returns the Note object with the given key.

void modifyNote (const std::string& key, const std::string& comment)
Modifies the Note object with the given key, that is associated with the Tool
object by replacing the comment with the given comment.

void removeNote (const std::string& key)
Removes the Note object with the given key from the list of Note objects
associated with the Tool object.

ToolPtr
ToolPtr is a type definition for a reference pointer to a Tool object.

ToolPtrList
ToolPtrList is a type definition for a list of reference pointers to Tool objects.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 Reference Manual

DRAFT 106 02 APR 1999

ToolPtrMap
ToolPtrMap is a type definition for an associative map between unique identifiers
of Tool objects and their reference pointers.

